
XML Prague 2020
Conference Proceedings

University of Economics, Prague
Prague, Czech Republic

February 13–15, 2020

XML Prague 2020 – Conference Proceedings
Copyright © 2020 Jiří Kosek

ISBN 978-80-906259-8-3 (pdf)
ISBN 978-80-906259-9-0 (ePub)

Table of Contents
General Information ... vii

Sponsors .. ix

Preface .. xi

A note on Editor performance – Stef Busking and Martin Middel 1

XSLWeb: XSLT- and XQuery-only pipelines for the web –
Maarten Kroon and Pieter Masereeuw .. 19

Things We Lost in the Fire – Geert Bormans and Ari Nordström 31

Sequence alignment in XSLT 3.0 – David J. Birnbaum .. 45

Powerful patterns with XSLT 3.0 hidden improvements – Abel Braaksma 67

A Proposal for XSLT 4.0 – Michael Kay ... 109

(Re)presentation in XForms – Steven Pemberton and Alain Couthures 139

Greenfox – a schema language for validating file systems –
Hans-Juergen Rennau ... 151

Use cases and examination of XML to process MS Word documents –
Colin Mackenzie .. 185

XML-MutaTe – Renzo Kottmann and Fabian Büttner .. 205

Analytical XSLT – Liam Quin ... 219

XSLT Earley: First Steps to a Declarative Parser Generator – Tomos Hillman 231

v

vi

General Information

Date

February 13th, 14th and 15th, 2020

Location

University of Economics, Prague (UEP)
nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic

Organizing Committee

Petr Cimprich, XML Prague, z.s.
Vít Janota, XML Prague, z.s.
Káťa Kabrhelová, XML Prague, z.s.
Jirka Kosek, xmlguru.cz & XML Prague, z.s. & University of Economics, Prague
Martin Svárovský, Memsource & XML Prague, z.s.
Mohamed Zergaoui, ShareXML.com & Innovimax

Program Committee

Robin Berjon, The New York Times
Petr Cimprich, Wunderman
Jim Fuller, MarkLogic
Michael Kay, Saxonica
Jirka Kosek (chair), University of Economics, Prague
Ari Nordström, Creative Words
Uche Ogbuji, Zepheira LLC
Adam Retter, Evolved Binary
Andrew Sales, Bloomsbury Publishing plc
Felix Sasaki, Cornelsen GmbH
John Snelson, MarkLogic
Jeni Tennison, Open Data Institute
Eric van der Vlist, Dyomedea
Priscilla Walmsley, Datypic
Norman Tovey-Walsh, MarkLogic
Mohamed Zergaoui, Innovimax

Produced By

XML Prague, z.s. (http://xmlprague.cz/about)
Faculty of Informatics and Statistics, UEP (http://fis.vse.cz)

vii

http://xmlprague.cz/about
http://fis.vse.cz

viii

Sponsors

oXygen (https://www.oxygenxml.com)
Antenna House (https://www.antennahouse.com/)
le-tex publishing services (https://www.le-tex.de/en/)
Saxonica (https://www.saxonica.com/)
print-css.rock (https://print-css.rock/)
Czech Association for Digital Humanities (https://www.czadh.cz)
speedata (https://www.speedata.de/)
schematronist.org (https://schematronist.org/)
Mercator IT Solutions Ltd (http://www.mercatorit.com)

ix

https://www.oxygenxml.com
https://www.antennahouse.com/
https://www.le-tex.de/en/
https://www.saxonica.com/
https://print-css.rock/
https://www.czadh.cz
https://www.speedata.de/
https://schematronist.org/
http://www.mercatorit.com

x

Preface

This publication contains papers presented during the XML Prague 2020 confer-
ence.

In its 15th year, XML Prague is a conference on XML for developers, markup
geeks, information managers, and students. XML Prague focuses on markup and
semantic on the Web, publishing and digital books, XML technologies for Big
Data and recent advances in XML technologies. The conference provides an over-
view of successful technologies, with a focus on real world application versus
theoretical exposition.

The conference takes place 13–15 February 2020 at the campus of University of
Economics in Prague. XML Prague 2020 is jointly organized by the non-profit
organization XML Prague, z.s. and by the Faculty of Informatics and Statistics,
University of Economics in Prague.

The full program of the conference is broadcasted over the Internet (see
https://xmlprague.cz)—allowing XML fans, from around the world, to participate
on-line.

The Thursday runs in an un-conference style which provides space for various
XML community meetings in parallel tracks. Friday and Saturday are devoted to
classical single-track format and papers from these days are published in the pro-
ceeedings.

This year we put special focus on CSS and publishing. On the un-conference
day there will be introductory tutorial about producing print output using CSS
followed by the workshop where future of CSS Print should be discussed. Friday
opening keynote by Rachel Andrew Refactoring (the way we talk about) CSS will
hopefully give you a new perspective about how to perceive CSS.

We hope that you enjoy XML Prague 2020!

— Petr Cimprich & Jirka Kosek & Mohamed Zergaoui
XML Prague Organizing Committee

xi

https://xmlprague.cz

xii

A note on Editor performance
A story on how the performance of Fonto came to be what it is,

and how we will further improve it
Stef Busking
FontoXML

<stef.busking@fontoxml.com>
Martin Middel

FontoXML
<martin.middel@fontoxml.com>

Abstract

This paper will discuss a number of key performance optimizations made
during the development of Fonto, a web-based WYSIWYM XML editor. It
describes how the configuration layer of Fonto works and what we did to
make it faster. It will also describe how the indexing layer of Fonto works
and how we improve it in the future.

1. Introduction

1.1. How does Fonto work?

Fonto is a browser-based WYSIWYM1 editor for XML documents. It can be con-
figured for any schema, including many DITA specializations, JATS, the TEI, doc-
book and more. Fonto configuration consists of three parts:
1. How do elements look and feel (the schema experience)
2. How can they be mutated (the operations)
3. The encompassing user interface of Fonto
The schema experience is specified as a set of rules that assign specific properties
to all nodes matching a corresponding selector. These selectors are expressed in
XPath.

Operations also make use of XPath in order to query the documents. Effects
are defined either as JavaScript code, or using XQuery Update Facility 3.0.

The user interface of Fonto has several areas (e.g., the toolbar, sidebar and cus-
tom dialog boxes) in which custom UI can be composed from React components.
These can observe XPath expressions to access the current state of the documents

1What You See Is What You Mean

1

and be updated when it changes. The documents themselves are rendered recur-
sively by querying the schema experience for each node and generating HTML
appropriate for the resulting configuration.

1.2. What is performance?
When a single key is pressed, Fonto needs to update the XML and then update all
related UI. This includes updating the HTML representation of the documents,
recomputing the state of all toolbar buttons based on the applicability of their
operation in the new state, and updating any other UI as necessary.

Typically, such updates involve looking up the values of various configured
properties for a number of nodes (by re-evaluating the associated XPath selectors
against those nodes) and/or executing other types of XPath / XQuery queries. In
order to keep the editor responsive, these updates need to be implemented in a
way that scales well with respect to both the complexity of the configuration as
well as the sizes of the documents being edited. In order to keep Fonto easy to
configure, we should not place too many requirements on the shape of this con-
figuration. This means Fonto has to deal with a wide range of possibilities regard-
ing the number of selectors etc.

When we started Fonto, we considered documents of around 100KB to be
‘pretty big’, and these could be pretty slow to work with. After heavy optimiza-
tion, we now have workable editors that load documents of multiple megabytes2,
using (automatically updating) cross references, (automatic) numbering of sec-
tions and more. This paper details a few of the most significant optimizations we
have applied in order to get to that point.

2. Accessing schema experience configuration
As described in the introduction, Fonto uses XPath selectors to apply a set of
properties to nodes. We call the combination of a selector and a value a declara-
tion.

Example of the look and feel configuration of the ‘p’ element:
configureAsBlock(sxModule, 'self::p');

This configuration does the following internally:

2Using just-in-time loading to only load a small subset, this even scales to working in collections total-
ing in the hundreds of megabytes, but that could be considered cheating.

A note on Editor performance

2

Table 1. Summary of properties set for a paragraph

Property Value
Automergable false
Closed false
Detached false
Ignored for navigation false
Removable if empty true
Splittable true
Select before delete false
Default Text Container none
Layout type block
Inner layout type inline
… (a total of 23 properties, plus optionally up to 35 more that are not set
automatically)

...

There are about 23 properties being configured for a single paragraph, each speci-
fying whether the paragraph may be split, how it should interact with the arrow
keys, how it behaves when pressing enter in and around it, etcetera.

2.1. Orthogonal configuration
A number of these properties can be set individually, such as the background
color or the text alignment of an element. This allows for a drastic reduction in
the amount of selectors. Previously, when configuring some paragraphs to have a
different background color compared to the ‘generic’ paragraph, all of the ‘the
same’ properties also needed to be configured. By adding a way to configure sin-
gle properties, reductions of more than three quarters of the configuration were
seen.

A note on Editor performance

3

Table 2. Orthogonal configuration

Without using Orthogonal Configura-
tion

With Orthogonal configuration

configureAsBlock(
 sxModule,
 'self::p',
 'paragraph'
);

configureAsBlock(
 sxModule,
 'self::p[@align="right"]',
 'paragraph with right alignment',
 {align: 'right'}
);

configureAsBlock(
 sxModule,
 'self::p',
 'paragraph'
);

configureProperties(
 sxModule,
 'self::p[@align="right"]',
 {
 markupLabel: 'paragraph with
right alignment',
 align: 'right'
 }
);

2 x 23 properties, plus one, for the
alignment = 47

23 properties, plus one, for the align-
ment, makes 24

For a property like how an element behaves when computing the plain text value
from it, the registry may look like this, for the p element. Note that multiple of
these selectors are automatically generated.

Table 3. Properties defined for a paragraph

Selector Plain text behavior Priority
self::p and
parent::*[(
 self::list-item
) and
parent::* [
 self::list[
 @list-type="simple"]]]

interruption 2

self::p and parent::*[(self::list-item) and
parent::*[self::list[@list-type="roman-upper"
and @continued-from]]]

interruption 2

<18 rows omitted for clarity>
self::p[parent::def] interruption 0
self::p interruption 0
self::*[parent::graphic] removed 0

A note on Editor performance

4

2.2. Selector buckets

As shown earlier, selectors are used extensively in the configuration layer. For
some selectors, it is quite obvious to see that a given node will never match a
given selector. For example, the selector self::p may never match the <div />
element.

We leverage this knowledge by indexing the selectors that are used in configu-
ration by a hash of the kind of nodes they may ‘match’ their ‘buckets’. We cur-
rently use node type buckets - derived from the nodeType values defined in the
DOM spec[8] - and node name buckets derived from the qualified names of ele-
ments.

Table 4. Buckets

Selector Bucket
self::p name-p
self::element() type-1
@class type-1 (only elements may have attributes)
self::p or self::div type-1
self::comment() type-8
self::* No bucket: both attributes and elements may match to

this selector

Note that some of these selectors could also be expressed as a list of more specific
buckets. For example, self::* could be stored under both the bucket for type-1
as well as the one for type-2 For simplicity, and to keep lookups by bucket as
efficient as possible, we have currently limited our implementation to a single
bucket per selector. We may revisit this decision in the future.

We then group the selectors that configure a certain property by their bucket.
By computing the same hash(es) that may apply for a node, we drastically reduce
the amount of selectors that need to be tested against any given node.

2.3. Selector priority / optimal order of execution

2.3.1. Conceptual Approach

An application may have the following configuration for the ‘italic font’ property:

A note on Editor performance

5

Table 5. Italic font per selector

Selector Value
self::cursive true
self::quote true
self::plain-text false
<default> none

The ordering of selectors is defined using a specificity system inspired by CSS: We
group and count the amount of ‘tests’ in an selector: a selector with two attribute
tests is more important than one with a single attribute test. Additionally, we
allow applications to define explicit priorities. Specificity is used only if priorities
are omitted or to break ties when priorities are equal.

The selectors defined by this piece of configuration will be evaluated in order
and the value of the first match will be returned. In this example, a <p /> element
will have no configuration for the ‘slant’ property, while the <quote /> will set it to
‘true’ and the <plain-text /> will set it to ‘false’.

2.3.2. Optimization

The ordering of declarations does not mean all of these selectors have to be execu-
ted in that specific order. In the table defining the properties set for a paragraph,
all of the high-priority selectors have a very low probability of matching. The
much simpler self::p selector is more likely to match. To generalize this prob-
lem, we use a Bayesian predictor for the likeliness of whether a selector will
match a given node.

The hypothesis (H) is that this selector matches. Evidence (E) is the hash
assigned to the node. This is configurable, but usually the name of the element we
input. We want to compute the probability of H given E: the selector matches for
this hash. Bayes theorem gives us that P H E = P E H P HP E where P E H
is the percentage of matches of this selector that match this hash. Basically, this is
the amount of times the selector matched a similar element, continuously
approximated based on previous results. P H is the percentage of matches of this
selector overall, and P E is the percentage of results of any selector for a node
with this hash. Because we will compare these scores for the same hash, the P E
part is constant and can be omitted.

We use the statistical probability of the selectors we will evaluate to determine
an optimal order of execution of selectors. If we evaluate all selectors in order of
decreasing likeliness, we only need to check selectors with higher priority but a
different value in case of a match. In pseudocode, this becomes:

A note on Editor performance

6

Let declarations be all declarations that may match the input, based on
buckets.
Sort declarations based on their priority, their specificity and lastly
on order of declaration.
Let skippedDeclarations be an empty list.
Let declarationsInOrderOfLikeliness be declarations, sorted using the
Bayesian predictor from most likely to least.
For likelyDeclaration of declarationsInOrderOfLikeliness do:
 If (likelyDeclaration.selector does not match input) continue;
 // We have a likely match, see whether it was the ‘good’ one
 For declaration of declarations do:
 If (declaration.selector is equal to likelyDeclaration.selector)
 // The likely declaration is the most matching one
 Return likelyDeclaration.value;
 If (declaration.value is equal to likelyDeclaration.value)
 // No need to evaluate this selector now,
 // it would result in the same value
 Add the declaration to skippedDeclarations, continue;
 // This higher-priority declaration would result in a different value
 If (declaration.selector does not match the input) continue;
 // This declaration applies, unless one of the skipped declarations
(with higher priority) matches as well
 For skippedDeclaration of skippedDeclarations do:
 If (skippedDeclaration.selector matches input)
 Return likelyDeclaration.value
 // We have no declaration that is deemed more important
 Return declaration.value

Fonto ends up querying a large number of declarations for all nodes in the loaded
documents as a result of rendering and other initial processing. This means that
the initial set-up will make sure that the Bayesian predictor is sufficiently trained
by the time the user starts editing.

2.3.3. Performance impact

Worst case: This algorithm has the same worst-case performance as the imple-
mentation without it. The worst case will be triggered when the most likely
match is also the least important one, and all preceding declarations point to
another value. In this case, the algorithm will be forced to evaluate every preced-
ing selector.

Best case: The most likely selector is preceded by a large amount of more
complex selectors, which point to the same value. The algorithm will only evalu-
ate a single selector: the most likely one. Because these selectors are prefiltered by
their bucket, this is the more likely case: it is more common to configure a num-
ber of paragraphs to have the same declared value in for instance enter behaviour
than all having different values.

A note on Editor performance

7

2.3.3.1. Measurement

We conducted a performance test of the initial render of a JATS document of
721KB, containing 18826 nodes in the configuration that was highlighted in the
table describing the properties set for a paragraph. These performance tests meas-
ured how long it took to render all of the content to html elements using Chrome
81 in Fonto 7.9.0. Tests were repeated 4 times.

Table 6. Performance of the Bayesian predictor

Amount of XPaths evaluated
Without the Bayesian predictor 121575
With the Bayesian predictor 109964

With the optimization, we see a 9.5% reduction in the amount of XPaths that are
being evaluated. The total load time is reduced by three seconds. This is a signifi-
cant improvement over the old situation.

Furthermore, we measured how many times certain XPath expressions were
executed. The following expressions stood out:

Table 7. XPaths with a fewer executions with the Bayesian predictor:

Selector Execution
count
without
predictor

Total time
spent execut-
ing this
expression

Execution
count
with pre-
dictor

Total time
spent execut-
ing this
expression

self::*[
 parent::*[
 self::term-sec[
 not(ancestor::abstract or
 ancestor::boxed-text)]]]
and not (
 self::node()[
 not(self::sec or
 self::term-sec)]
)

1797 93 ms 900 42 ms

self::label 79 2ms 1662 47 ms
self::label[
 parent::abstract]

79 3 ms 1 (Too low to
measure)

self::label[parent::fn] 1733 60 ms 1091 42 ms
self::named-content[
 @vocab="unit-category"]

2173 160 ms 1174 96 ms

A note on Editor performance

8

self::named-content[
 @vocab="specification"]

325 22 ms 538 56 ms

From this table, the label selectors stand out the most: the self::label selector
grew both in execution count and in the total spent. This effect is explained by the
next selector: self::label[parent::abstract]. This selector is part of a set of
twelve similar selectors that went for 79 executions to a single one. The Bayesian
predictor learned that the self::label select is more likely to match than the
self::label[parent:abstract] and prevents executing it.

2.3.3.2. Comparison to another approach

In order to verify the results of the Bayesian predictor, we compared it to another,
similar approach. Instead of using the predictor as the main sorting function, use
the 'complexity of a selector. In other words, consider 'simpler' expressions to be
more likely to match than 'complex' selectors. In order to approximate the 'com-
plexity' of a selector, use the specificity algorithm as described in an earlier sec-
tion.

This gave us the following results for the selectors mentioned in the previous
chapter:

Total amount of XPaths executed: 111864.

Table 8. Performance metrics of using selector specificity as likeliness

Selector Execution count with-
out predictor

Total time spent executing
this expression

self::*[
 parent::*[
 self::term-sec[
 not(ancestor::abstract or
 ancestor::boxed-text)]]]
and not (
 self::node()[
 not(self::sec or
 self::term-sec)]
)

899 43 ms

self::label 1684 46 ms
self::label[
 parent:abstract]

0 -

self::named-content[
 @vocab="unit-category"]

2165 175 ms

The table gives interesting results: the self::label selector is executed many
times, but the self::label[parent:abstract] selector is never executed at all.

A note on Editor performance

9

However, the moderately complex self::named-content[@vocab="unit-
category"] selector is evaluated way more often than when using the Bayesian
predictor.

When going through the configuration of this editor, this can be explained.
The 'normal' <named-content /> element is expected to never occur in the editor
in question. It is configured to never be rendered. However, the more special
<named-content /> elements that have additional attributes set are expected to
occur, and are given a number of additional visualization properties, such as
widgets, additional options for a context menu etcetera.

In essence, the self::named-content occurs few times in the total configura-
tion, while the specific versions occurs many times. However, some specific ver-
sions of this element occur more than others; the Bayesian predictor takes
advantage of this while this approach can not hold it into account.

2.4. Deduplication of duplicate property values
This best case is further leveraged by deduplicating duplicate values. In some
cases, the configuration API allows one to input instances of functions. We
rewrote these APIs to allow for better memoization: all function factories attempt
to return the same function when called multiple times with the same arguments.

2.5. Related work
While the selector-to-value configuration in Fonto looks like how XSLT links up
selectors to templates, they differ on a fundamental point: Templates in XSLT are
usually unique to a selector; they see little reuse. The value space of a configura-
tion variable in Fonto is usually small: they mostly consist of booleans and any
non-discrete data is grouped nonetheless by the deduplication mechanisms
described earlier. This makes optimizations like the Naive Bayes optimization
work out of the box.

Lumley and Kay present optimizations for the XSLT case. In particular, they
highlight the common use of DITA-class-substring selectors in DITA cases. How-
ever, such selectors and associated optimizations are not as applicable in Fonto.
While Fonto does offer an abstraction3 over the dita-class infrastructure for DITA-
based editors, we advise against using it for configuration. This is because the
class hierarchy usually produces unwanted results when used directly in our
orthogonal configuration hierarchy and doing so may introduce a lot of complex-
ity in the configuration as specific values frequently need to be overridden for
specific sub-classes.

An example of this problem is found in specializing the list item element: not
all specializations of the list item should be rendered or behave like list items:

3 https://documentation.fontoxml.com/api/latest/fonto-dita-class-16324219.html

A note on Editor performance

10

https://documentation.fontoxml.com/api/latest/fonto-dita-class-16324219.html
https://documentation.fontoxml.com/api/latest/fonto-dita-class-16324219.html

Take for example the <consequence /> element in the Dita hazard domain. These
elements should not be rendered like lists and they should not be indentable
using the tab key, nor splittable using enter.

Because of these reasons, and because the dita inheritance structure does not
give any pointers on how to create those elements, the configuration is most often
denormalized to simply using node names.

3. Processing XML at interactive speeds

3.1. General XPath performance
The main performance bottleneck of Fonto is the performance of running XPath
queries. XPaths is not only used to retrieve the schema experience configuration,
but also to run generic queries. In order to speed up most queries, most of the
optimizations described in the work of Kay[5] are implemented.

3.1.1. Outermost

Furthermore, a number of specific optimizations are implemented. One of the
strongest optimizations regards the ‘outermost’ function, which returns the ‘high-
est level’ nodes from an input set. An example usage in Fonto is find and replace,
which runs a query similar to following to determine the searchable text of an ele-
ment:

descendant::node()[
 self::text() or
 (self::paragraph or self::footnote)
] => outermost()

This query returns all textnodes that are directly in a ‘block’, and any elements
that are also a ‘block’. Consider the following XML:

<xml>
 <paragraph>
 A piece of text
 <footnote>text is a string of characters</footnote>
 with a footnote in it
 </paragraph>
</xml>

When evaluating this query in a naive way, the path expression will result in a list
of all descendants that match its filter, including all of the descendants that will
be removed by the ‘outermost’ function.

A common optimization in functional languages like XPath is to perform lazy
evaluation. We implemented this using a generator pattern inspired by LINQ4.
However, lazy evaluation alone is not enough in this case. To further optimize

A note on Editor performance

11

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

outermost, we pass a hint into the generator for the descendant axis, indicating
whether it should traverse the descendants of the previous node returned or skip
to the next one.

Consider the expression above, which consists of three parts: a descendant
part, a filter part and the outermost function. Using lazy evaluation, we start at
the outermost function, which requests the first node from the expression that
feeds it. To compute this, the filter expression requests nodes from the descendant
expression until it finds one that matches the filter, which is returned to the outer-
most function. The outermost function is not interested in the descendants of this
node, so it now passes the "skip descendants" hint when requesting the next
node. This hint, passed through the filter expression to the descendant expres-
sion, prevents the latter from traversing the subtree of the matching node and
instead skips to the following node.

As find and replace recursively applies the query for text nodes and sub-
blocks, this optimization basically changes the performance of that fromO nlog n complexity to O n , as every subtree is now only traversed once
instead of for each ancestor.

3.2. Schema validity

Fonto checks the validity of XML to the schema by converting each content model
into a nondeterministic finite automaton (NFA), similar to the approach described
by Thompson & Tobin[7]. We perform several optimizations to ensure this valida-
tion can happen quickly enough to not seriously impact editor performance.

Before a schema is loaded in Fonto, it is pre-processed in an offline compila-
tion step. This converts the schema to a JSON format and simplifies the content
model expressions. We first remove any indirections such as substitution groups
and redefinitions. We then apply a number of rewrite rules to reduce these con-
tent models to equivalent but simpler models. For example, if any item within an
<xs:choice> is optional, the entire choice can be considered optional, and all
items within can be marked as required (minOccurs="1"). If multiple items
within the choice were optional, this reduces the number of empty transitions
that have to be created in the resulting NFA.

For example, the schema structure:

<xs:choice minOccurs="1">
 <xs:element name="employee" type="employee" minOccurs="0"/>
 <xs:element name="member" type="member" minOccurs="0"/>
</xs:choice>

Is equivalent to:

4 https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

A note on Editor performance

12

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

<xs:choice minOccurs="0">
 <xs:element name="employee" type="employee" minOccurs="1"/>
 <xs:element name="member" type="member" minOccurs="1"/>
</xs:choice>

When compiling the reduced schema to an NFA we apply a few optimizations
over the Thompson & Tobin algorithm in order to further reduce the size of the
resulting automaton. Firstly, all branches of a choice that each process a single
node (such as the “employee” and “member” branches in the example) are repre-
sented as a single transition. Large choices between multiple single-element
options are a fairly common occurrence in schemata we’ve seen used in Fonto.
This optimization reduces the number of possible paths in the NFA, reducing the
memory and execution time costs for computing possible paths during valida-
tion. In real-world schemata, such optimizations may be more significant. For
example, the content model of paragraphs usually consists of a repeating choice
between a number of inline elements.

Secondly, and again to reduce the size of the NFA, any repetition of a term T
with minOccurs="1" and maxOccurs="unbounded" is compiled to the automaton
for T followed by an additional empty transition back to the start. The original
Thompson & Tobin algorithm would build an NFA containing the automaton for
T twice (once required, once optional repeating).

Our implementation for applying the resulting NFAs to XML content makes
heavy use of pre-allocated typed arrays to store all state during traversal. Being a
garbage-collected language, manual memory management is not commonly con-
sidered in JavaScript applications. However, validation being a very hot code
path, preventing allocations serves both to avoid the performance overhead asso-
ciated with them, as well as the later cost of having garbage collection reclaim
those allocations. Ignoring the schema and NFA optimizations, manual memory
management alone has led to a significant performance improvement compared
to our implementation before these changes: applying a test NFA similar5 to
<xs:any minOccurs="0" maxOccurs="unbounded" / > to a sequence of 10000
children went from around 111ms to just 17ms.

3.3. Indices
Many operations in Fonto applications require traversing parts of the DOM using
XPath queries. While most of these traversals are limited to a reasonably local
subset of nodes, there are some types of queries that have to traverse large num-
bers of nodes. In our experience, these most commonly take one of two shapes.
One is to find a specific element or set of elements based on the value of some of
their attributes, for instance, finding the target of a reference based on its xml:id.

5This particular test also involves determining all possible minimal traces through the NFA. Fonto can
use this information to synthesize[6] missing elements.

A note on Editor performance

13

Another is to find all descendant nodes of a certain type, often under some ances-
tor node, for instance, finding all footnotes in the document.

To prevent the full DOM traversal in answering these queries, it can help to
perform some of the work ahead of time. To this end, Fonto allows defining speci-
alized indices, which are then made accessible to XPath queries as functions that
return associated data given some key. Fonto currently has three types of index:
• The attribute index can be defined for any attribute name (local name and

namespace URI), and maps a given value to the set of nodes that have the
attribute set to that value.

• The bucket index can be defined for any bucket, as discussed in an earlier sec-
tion, and tracks all nodes matching that bucket that are currently part of any
loaded document

• The descendant index tracks the set of descendant nodes matching a given
selector under a specified ancestor. To make updates efficient, this selector is
currently severely limited in terms of the parts of the DOM it may refer to.

Internally, Fonto makes heavy use of mutation observers (as defined in the DOM
standard) and the resulting mutation records to represent changes in any of the
loaded documents. Indices interpret these mutation records to determine which
changes affect their data, and then update that data accordingly only if such
changes are found.

In our current implementation, all indices should be explicitly defined by the
application developer. We have considered automatically generating indices,
such as attribute indices for attributes using the xs:ID type, but found that many
schemata do not actually assign this type for their identifier attributes.

3.3.1. Indexing arbitrary computations

In addition to these indices, mutation records can be used to invalidate the
cached results of any DOM-based computation, including XPath evaluation[4].
This requires tracking that computation’s data dependencies in terms similar to
the relations described by the mutation records. While not an index in the tradi-
tional sense, the similarity in terms of implementation and integration with the
indices described above have led us to refer to this system as the callback index.

Summarizing from our earlier work, we use a facade between the computa-
tion and all DOM access to intercept these events and track corresponding
dependencies in terms of the corresponding mutation record type (either child-
List, attributes or characterData). When mutation records are processed, we match
them against these dependencies and signal (potential) invalidation of a compu-
ted value when the data depended on has changed. To avoid unnecessary work,
re-computation is not performed automatically, but only on demand. This usually
happens when the UI using the result is ready to update, instead of updating

A note on Editor performance

14

these values many more times than could ever be observed by any user. It also
avoids work in cases the UI decides not to re-issue the computation, for instance
based on the result on another. For instance, the title of some figure in the docu-
ment outline does not need to be recomputed if the entire section containing that
figure is removed from the outline tree.

Both mutation records and raw DOM access operations can sometimes
present a rather coarse-grained view of changes / dependencies. For instance,
looking for a child element of a specific type may require visiting and examining
all children of the parent node. This means that the corresponding computation
may be invalidated unnecessarily if a node of a different type is inserted under
the same parent. We use two mechanisms to reduce such unwanted invalidations.

First, dependencies registered by the DOM facade can specify a test callback
in addition to the mutation record type. This test is evaluated against the changed
document if a mutation record is processed with the matching type. If the test
does not pass, the mutation record is ignored. We use this, for instance, to check
whether a childList change affected the “parent node” relation for a given node.

Second, for most axis traversals in XPath we pass the bucket of the correspond-
ing node test to the DOM facade. The resulting bucketed dependencies only inva-
lidate the computation result for changes that match the bucket in question. For
instance, the childList dependency for the selector child::p only triggers invalid-
ation if a childList mutation record adds or removes <p> elements, not when only
other nodes are added or removed.

3.3.2. Indexing and overlays

In Fonto, both the DOM and indices use a system of overlays to represent a future
state of the DOM without actually mutating the original. For indices, these over-
lays are only initialized and then updated at the moments when the indices are
actually used. As Fonto computes many possible future states at any time (for
example, to determine the states of buttons in the toolbar), this avoids a signifi-
cant amount of work for operations that do not use indices.

Furthermore, the lazy initialization of overlays allows computations based on
the unmodified DOM to be re-used across different operations, as long as the
value is computed before any modifications are made. In practice, this happens a
lot. For example, tables use the callback index to derive a schema-neutral “grid
model” representation from the DOM nodes. They then mutate this model, which
in turn updates the schema-specific table DOM. As the entire table toolbar uses
the same initial state of the DOM to compute the state of its operations, we only
need to compute this grid model once. In fact, the same model has likely already
been computed and cached in the callback index in order to validate the result of
the previous operation, and is also used in rendering the table.

A note on Editor performance

15

3.3.3. Fonto versus XML databases

In general, XML databases solve similar problems in terms of using indexing to
make queries faster. However, the problem space differs in the following ways:

In Fonto, loading multiple megabytes of XML is a lot; we are on the web, so
data needs to be small enough to download quickly and as a result will always fit
in memory. In XML databases, gigabytes of XML is not rare and to be expected.
In Fonto, authors on a bad internet connection don’t want to wait ages for their
documents to load, so larger documents are usually cut up into smaller chunks,
which are loaded just in time for editing.

In Fonto, both queries and changes usually affect the same small part of the
document. Furthermore, changes happen frequently. In an XML database, both
changes and query subjects are often more spread-out. Because of this, our index-
ing approach needs to take frequent updates into account, and such updates need
to happen quickly enough for users not to notice any slowdown.

In XML databases, it is acceptable to build indices during load time. In Fonto,
the editor should be up and running as soon as possible. This means we can not
build a large index at start-up if computing that index takes a non-trivial amount
of time. Also, because Fonto usually does not run for a long time, it is probable
that an index will never be used.

The current cache invalidation approach so far fits that set of requirements. A
reusable result is often only computed when necessary, and forgotten when it no
longer applies. A larger computation can be spread out over multiple separately
indexed entries in order to make recomputation more efficient in cases where
only part of these are invalidated.

4. Conclusions
Lots of tricks are possible to make user-friendly authoring of XML fast, even in
JavaScript and webbrowsers. When Fonto was two years old, we received a lot of
feedback on the performance of documents of 100KB of XML. Currently, we have
clients working with single documents ranging into the megabytes, configured
using complex schemata like JATS or the TEI standards. Using approaches like
JIT loading and chunking, we have clients working with tens of thousands of
documents which we are unable to even download and keep in memory simulta-
neously.

5. Future work
At Fonto we continue to move to declarative formats to specify the configuration,
behavior and UI of the editor. We prefer to use existing standards, and continue
to improve and extend our XPath, XQuery and XQUF implementations. For con-
figuration, the closest analogue in terms of declarative formats seems to be CSS.

A note on Editor performance

16

However, we prefer to keep using XPath for our selectors. We also have several
property types that go far beyond the property values commonly found in CSS,
including the way the appearance of elements is defined as a composition of vis-
ual components and widgets. It is likely we will need to develop a custom format
to support this combination.

In mutating the XML DOM, moving to XQUF has the additional advantage
that we can use the callback index to track the dependencies of an operation, and
therefore only recompute its effect (represented as a pending update list) and
state (based on the validity of the resulting DOM) when required. In addition to
converting current JavaScript-based primitives, this requires allowing other bits
of state to be dependency-trackable in the same way as the DOM, including the
current selection.

To minimize work even further with minimal impact on the way developers
configure Fonto, we wish to further expand indices and the callback index into a
framework for general incremental computation. This requires dependencies
between index entries (already partially implemented), which allow for memoi-
zation by isolating one computation from another. To propagate invalidations
caused by DOM changes efficiently, we also need to add a way to stop this propa-
gation when the new result for some computation equals the previous value, as
that means results depending on that value can be reused.

Bibliography
[1] XQuery update facility 3.0 https://www.w3.org/TR/xquery-update-30/
[2] A minimalistic XPath 3.1 implementation in pure JavaScript https://

github.com/FontoXML/fontoxpath
[3] https://drafts.csswg.org/selectors-4/#specificity-rules
[4] Martin Middel. Soft validation in an editor environment. 2017. http://

archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf
[5] Michael Kay. XSLT and XPath Optimization http://www.saxonica.com/

papers/xslt_xpath.pdf
[6] Martin Middel. How to configure an editor. 2019. https://

archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
[7] Thompson, Henry S., and Richard Tobin. "Using finite state automata to

implement W3C XML schema content model validation and restriction
checking." Proceedings of XML Europe. Vol. 2003. 2003.

[8] Various authors. The DOM Living Standard. Last updated 16 January 2020.
https://dom.spec.whatwg.org/

A note on Editor performance

17

https://www.w3.org/TR/xquery-update-30/
https://github.com/FontoXML/fontoxpath
https://github.com/FontoXML/fontoxpath
https://drafts.csswg.org/selectors-4/#specificity-rules
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf
http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf
http://www.saxonica.com/papers/xslt_xpath.pdf
http://www.saxonica.com/papers/xslt_xpath.pdf
https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
https://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
https://dom.spec.whatwg.org/

18

XSLWeb: XSLT- and XQuery-only
pipelines for the web

Maarten Kroon
<maarten.kroon@armatiek.nl>

Pieter Masereeuw
<pieter@masereeuw.nl>

Abstract

XSLWeb is an open source and free to use web development framework for
XSLT and XQuery developers. It is based on concepts similar to frameworks
like Cocoon and Servlex, but aims to be more easily accessible and prag-
matic.

1. Introduction

When a webbrowser asks information from a webserver, the data sent to the
server may look like this:

GET /demojam HTTP/1.1
Host: www.xmlprague.cz
User-Agent: Lynx/2.8.9dev.16 libwww-FM/2.14 SSL-MM/1.4.1 GNUTLS/3.5.17
..

Now suppose that a request would look like this:

<req:request>
 ..
 <req:path>/demojam</req:path>
 <req:request-URI>http://www.xmlprague.cz/demojam</req:request-URI>
 ..
</req:request>1

If this were true, generating and serving a webpage could easily be done with
XSLT, for example:

<xsl:template match="/req:request[req:path eq '/demojam']">
 <xsl:apply-templates select="doc('demojam4ever.xml')"/>
</xsl:template>

1Namespace definitions are omitted from all examples in this document.

19

2. Why XSLWeb?
XSLWeb was created out of the need to have a pipelining platform that is trivially
simple to use for XSLT developers. Of course, we had a look at existing technolo-
gies such as Cocoon, XProc and Servlex.

At the time that XSLWeb was created, we had a lot of experience with Apache
Cocoon. Unfortunately, the Cocoon project lost the interest of its developers - the
latest release dates from 2013, while the one before that dates from 2007. Version
3.0, a major rewrite, never made it further than the Alpha version in 2011. Fur-
thermore, we found that Cocoon, albeit very powerful, had a rather steep learn-
ing curve, so in the end it proved to be not so easy to use after all.

The Servlex platform does not seem to be actively developed anymore. We
have no practical experience with it.

XProc is of course a very serious technology for creating pipelines. Unfortu-
nately, the language requires some time before you have a feel for it2. For us,
XProc's main drawback was that it is not specifically intended for use in a web
service environment. Even in the case of Piperack (the web companion program of
the XProc processor Calabash), you do not have easy access to all information
inside the HTTP request, while such information can be vital for many web appli-
cations.

Our most important reason for moving away from XProc was that we really
wanted a platform that is so straightforward that a person with XSLT knowledge
can use it almost at once. Furthermore, we wanted it to be very simple to combine
data coming from different sources into one pipeline. Cocoon and XProc require
you to set up distinct pipelines that you eventually have to merge. In XSLWeb,
you can, in most cases, reference external information, such as a REST services or
relational databases, from the XSLT stylesheet itself. It does so by providing a
large set of extension functions (such as functions for querying databases and
manipulating result sets).

In short, XSLWeb aims to be practical and very easy to use for XSLT (and
XQuery) programmers. It has the following characteristics:
• It gives access to the full HTTP request in an XML representation;
• It supports the full HTTP specification - GET, POST, PUT, and all other meth-

ods;
• It makes pipelining trivially easy;
• It allows XSLT and XQuery programmers to program things at the moment

they need it - i.e. in their stylesheet or XQuery script.
• It offers an XML representation of the HTTP response;
• It allows caching;

2Of course, XProc 3.0 makes the programmer's life a lot easier, but the concepts remain the same.

XSLWeb: XSLT- and XQuery-only pipelines for the web

20

• It allows access to static content (assets);

• It has a large set of extension functions, including, e.g.:

• Functions for manipulating the request, the session and the response;

• EXPath file functions and EXPath http functions;

• Spawning external processes;

• Sending e-mails;

• Image processing;

• ZIP file processing;

• SQL processing;

• and even (experimental) server side Javascript.

• Allows the addition of user defined extension functions in Java, using the
Saxon API.

3. XSLWeb in a nutshell
Using XSLWeb, XSLT/XQuery developers can develop both web applications
(dynamic websites) and web services. In essence, an XSLWeb web application is
one or more XSLT stylesheets (version 1.0, 2.0 or 3.0) or XQueries (version 1.0, 3.0
or 3.1) that transform an XML representation of the HTTP request (the Request
XML) to an XML representation of the HTTP response (the Response XML). Which
specific XSLT stylesheet or XQuery (or pipeline of XSLT stylesheets and XQuer-
ies) must be executed for a particular HTTP request is governed by another XSLT
stylesheet, the request dispatcher stylesheet, which is a normal stylesheet that
dynamically generates a pipeline, represented by an XML <pipeline> element.

During transformations, data sources can be accessed using a library of built-
in extension functions that provide HTTP communication (for example to con-
sume REST or SOAP based web services), file and directory access, relational
database access, and so on.

The result of a transformation pipeline can be serialized to XML, (X)HTML or
plain text format and using specific serializer pipeline steps to JSON, ZIP files,
PDF, Postscript or RTF (using XSL-FO and Apache FOP).

The configuration of an XSLWeb web application can be specified in an XML
configuration document called webapp.xml. An XSLWeb server can contain multi-
ple separate web applications.

The Figure 1 illustrates the flow of control within XSLWeb.

XSLWeb: XSLT- and XQuery-only pipelines for the web

21

1. A HTTP request is sent from a client (a web browser or webservice client).

2. The HTTP request is serialized by the Request Serializer to a Request XML
document. All information of the request is preserved in the XML representa-
tion.

3. The Request XML is the input of the Request Dispatcher, which transform the
it using the webapp-specific XSLT stylesheet request-dispatcher.xsl. The output
of this transformation is a pipeline specification, in the simplest form only
specifying the path to an XSLT stylesheet that will be used to transforming the
Request XML to the Response XML. This specification could also contain a
pipeline of multiple XSLT transformations and XML Schema or Schematron
validations.

4. The pipeline specification is the input for the Pipeline Processor, which reads
the Pipeline XML and executes the pipeline transformation and validation
steps. The input for the first transformation in the pipeline is the same Request
XML as was used as input for the Request Dispatcher.

5. The Pipeline Processor executes the pipeline of XSLT stylesheets, XQueries
and validations. The last transformation in the pipeline must generate a
Response XML document.

6. The Response XML is then passed on to the Response Deserializer, which
interprets your Response XML and converts it to a HTTP response, which is
sent back to the client, a web browser of webservice client (7).

Figure 1. The flow of a HTTP request to a HTTP response within XSLWeb

XSLWeb: XSLT- and XQuery-only pipelines for the web

22

3.1. The Request XML and the Response XML

The Request XML is an XML representation (or XML serialization) of the HTTP
Request. It contains all information of the raw request, including normal headers,
request parameters, request body, file uploads, session information and cookies.

The Response XML is an XML representation (or XML serialization) of the
HTTP Response. It contains the HTTP headers, the response body, session infor-
mation and cookies.

Both the Request XML and the Response XML are formally described in an
XML Schema, to which they must conform.

3.2. The Request dispatcher XSLT stylesheet

The task of the XSLT stylesheet request-dispatcher.xsl is to dynamically generate
the pipeline specification that is then used to process the Request XML and con-
vert it to the Response XML. The input of the request dispatcher transformation is
the Request XML which implies it has all information available to generate the
correct pipeline. The output of the request dispatcher transformation is a pipeline
specification.

The resulting pipeline specification contains one or more transformation,
query, validation or serialization steps. The input of the first stylesheet or query in
the pipeline is the Request XML, the output of the last stylesheet in the pipeline
must conform to the Response XML schema3.

The pipleline specification is formally described in an XML Schema, to which
it must conform.

3.2.1. Example pipelines

Below is an example of a very basic request dispatcher stylesheet that generates a
valid pipeline for the HTTP request http://my-domain/my-webapp/hello-world.html:

 <xsl:stylesheet ..>

 <xsl:template match="/req:request[req:path eq '/hello-world.html']">
 <pipeline:pipeline>
 <pipeline:transformer name="hello-world"
 xsl-path="hello-world.xsl" log="true"/>
 </pipeline:pipeline>
 </xsl:template>

</xsl:stylesheet>

3This implies that in XSLWeb, other than in for example Cocoon and XProc, pipelines are generated
dynamically.

XSLWeb: XSLT- and XQuery-only pipelines for the web

23

The following example uses the request parameter lang in the request http://my-
domain/my-webapp/hello-world.html?lang=en to determine the stylesheet. This lang
parameter is also passed to the stylesheet as a stylesheet parameter:

<xsl:template match="/req:request[req:path eq '/hello-world.html']">
 <xsl:variable name="lang"
 select="req:parameters/req:parameter[@name='lang']/
req:value[1]"/>
 <pipeline:pipeline>
 <pipeline:transformer name="hello-world"
 xsl-path="{concat('hello-world-', $lang, '.xsl')}">
 <pipeline:parameter name="lang" ..>
 <pipeline:value>{$lang}</pipeline:value>
 </pipeline:parameter>
 </pipeline:transformer>
 </pipeline:pipeline>
</xsl:template>

A slightly more complicated pipeline shows how you could render to different
formats (e.g., HTML, PDF, EPUB) by using a request parameter to generate for-
mat-specific pipelines:

<xsl:variable name="reqparms" as="element(req:parameter)*"
 select="/req:*/req:parameters/req:parameter"/>

<xsl:template match="/req:request[req:path eq '/result-document']">
 <xsl:variable name="format" as="xs:string?"
 select="$reqparms[@name eq 'format']/req:value"/>

 <pipeline:transformer xsl-path="retrieve-xml.xsl"/>

 <xsl:choose>
 <xsl:when test="$format eq 'html'">
 <pipeline:transformer xsl-path="xml2html.xsl"/>
 </xsl:when>
 <xsl:when test="$format eq 'pdf'">
 <pipeline:transformer xsl-path="xml2fo.xsl"/>
 <pipeline:fop-serializer/>
 </xsl:when>
 <xsl:when test="$format eq 'fo'">
 <pipeline:transformer xsl-path="xml2fo.xsl"/>
 </xsl:when>
 <xsl:when test="$format eq 'epub'">
 <!-- xml2epub.xsl generates a response with a body that
 contains an XML container file in a format the
 zip-serializer can serialize.
 -->

XSLWeb: XSLT- and XQuery-only pipelines for the web

24

 <pipeline:transformer xsl-path="xml2epub.xsl"/>
 <pipeline:zip-serializer/>
 </xsl:when>
 <xsl:otherwise>
 <pipeline:transformer xsl-path="error.xsl"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

3.3. Pipelines

A pipeline consists of:
• One or more of the following transformation pipeline steps:

• transformer: transforms the input of the pipeline step using an XSLT ver-
sion 1.0, 2.0 or 3.0 stylesheet;

• query: processes the input of the pipeline step using an XQuery version 1.0,
3.0 or 3.1 query;

• transformer-stx: transform the input of the pipeline step using a STX
(Streaming Transformations for XML) version 1.0 stylesheet.

• Zero or more of the following validation pipeline steps:
• schema-validator: validates the input of the step using an XML Schema ver-

sion 1.0;
• schematron-validator: validates the input of the step using an ISO Schema-

tron schema.
• Zero or one of the following serialization pipeline steps:

• json-serializer: serializes XML output to a JSON representation;
• zip-serializer: serializes an XML ZIP specification to an actual ZIP file;
• resource-serializer: serializes a text or binary file to the response;
• fop-serializer: serializes XSL-FO generated in a previous pipeline step to

PDF using the Apache FOP XSL-FO processor.
The output of the pipeline can be cached by specifying extra attributes on the
<pipeline:pipeline/> element.

3.3.1. Goodies

XSLWeb extends the standard XSLT/XPath 1.0, 2.0 and 3.0 functionality in a num-
ber of ways:
• XSLWeb provides a number of built-in XPath extension functions that you can

use to read and write files and directories, execute HTTP requests, access the

XSLWeb: XSLT- and XQuery-only pipelines for the web

25

Request, Response and Context, Session and WebApp objects, log messages,
send e-mails, query databases and so on;

• Other pipelines can be called from within a stylesheet and the result of this
nested pipeline can be used or embedded in the calling stylesheet by passing a
URI that starts with the scheme “xslweb://” to the standard XSLT document() or
doc() function;

• URLs that are passed to XSLT’s document() or doc() function and that must be
proxied through a proxy server can be provided with two extra request
parameters: proxyHost and proxyPort;

• Pipeline stylesheets are also provided with any parameters that are defined
within the element pipeline:transformer in the Request dispatcher stylesheet
request-dispatcher.xsl. The parameters only have to be declared in the style-
sheets (as <xsl:param/> elements) when they are actually used;

• Within every transformation a number of standard stylesheet parameters is
available, such as:
• The configuration parameters from the parameters section in the the con-
figuration file of an XSLWeb application (webapp.xml);

• config:home-dir: the path to the XSLWeb home directory;
• config:webapp-dir and config:webapp-path: the paths to the base directory of

the webapp and the path in de url to the web application, respectively;
• etc.

3.4. Web applications
An XSLWeb installation can contain multiple separate web applications. A web
application can be added under the folder «xslweb-home»/webapps and has the fol-
lowing folder structure:

XSLWeb: XSLT- and XQuery-only pipelines for the web

26

Figure 2. XSLWeb folder structure

Apart from the top-level folder (here: my-webapp) and one additional XSLT- or
XQuery-file, the only required files are webapp.xml and xsl/request-dispatcher.xsl.

The folder my-webapp can have any name you like (provided it doesn’t contain
spaces or other strange characters; its name may come back in the URL of the
application). The folder lib can contain any custom XPath extension functions you
have developed in Java and 3rd party libraries they depend on. The folder static
contains all static files you use in your web application, like images, css style-
sheets and javascript files. The folder xsl contains the XSLT stylesheet request-dis-
patcher.xsl and at least one pipeline XSLT stylesheet that transforms Request XML
to Response XML. The folders xsd and sch can contain XML Schema or Schema-
tron validation specifications. The file webapp.xml contains further configuration
of the web application.

3.4.1. The file webapp.xml

The file webapp.xml contains the configuration of the web application. It must con-
form to its own XML Schema and contains the following configuration items:
• Title: The title of your web application;
• Description: The description of your web application;
• Development mode: whether or not developmen mode is active.The develop-

ment mode mainly defines caching, buffering and logging behaviour of the
application;

• Resources: The definition of requests to static files that should not be processed
by the request dispatcher (but should be served straight away) and the dura-
tion these resources should be cached by the browser (default 4 hours);

XSLWeb: XSLT- and XQuery-only pipelines for the web

27

• Parameters: The definition of webapp specific configuration parameters that
are passed as stylesheet parameters to every XSLT transformation;

• Jobs: The definition of scheduled jobs (a crontab-like facility, used when you
want to execute a pipeline (repeatedly) on certain moments without user
interaction);

• Data sources: the definition of JDBC data sources;
• FOP configurations: configurations for the Apache FOP serialization step.

3.5. Running XSLWeb

XSLWeb is a Java application that conforms to the Java Servlet Specification. It can
be run from within any Java application server, such as Apache Tomcat. In devel-
opment and testing situations, it can also be run with its own built-in servlet con-
tainer.

3.6. Performance and data model

XSLWeb has been subjected to performance and stress tests as part of a product
selection process in a department of the Dutch ministry of internal affairs.
XSLWeb was required to transform randomly chosen XML texts to HTML within
140 ms. One of the problems of measuring XSLWeb's performance is that meas-
urements are influenced by the size of the XML documents to be transformed and
by the efficiency of the stylesheets.

The machines used for the test were a fast laptop (Core i9 processor with 6
cores, and SSD) and a slower virtual server with physical disk and a Xeon CPU
E5-2690 processor. The stylesheets for this test had been routinely used for off-
line production of the same HTML pages. Some of the XML files were large, and
some stylesheets were rather inefficient.

Two XML collections with different document formats and stylesheets were
used for the test, but due to lack of time, one of the tests could only be performed
on the slower machine.

Given a load of approx. 15 concurrent requests, we obtained the following
averages:

Table 1.

 Fast laptop Server
Test 1 99% of requests served

within 61 ms
95% of requests served
withing 161 ms

Test 2 n/a 99% of requests served
within 55 ms

XSLWeb: XSLT- and XQuery-only pipelines for the web

28

 Fast laptop Server
Average response times
(both tests)

14 ms 88 ms

Worst cases 1287 ms 7292 ms

Investigation of the worst cases revealed that performance was severely ham-
pered by the inefficiency of one and the same stylesheet. It should be relatively
easy to correct this stylesheet in such a way that it navigates the large XML docu-
ment with less overhead and by switching to XSLT 3.0 and use (hash)maps.

Internally, XSLWeb uses Saxon's efficient tiny tree model, as discussed by
Michael Kay on the XML Prague 2018 conference.

4. XSLWeb in the real world
XSLWeb is used, among others, in webservices and websites of KOOP (Kennis- en
Exploitatiecentrum Officiële Overheidspublicaties; Knowledge and Exploitation
Centre Official Government Publications, a department of the Dutch ministry of
internal affairs), the Dutch ministry of foreign affairs (treaty database), the Dutch
Kadaster (land registry), Octrooicentrum (patents) and many other places.

But: why not try it yourself? It's free, easy to use, and best of all: it's fun!

A. References

• XSLWeb is available on Github, https://github.com/Armatiek/xslweb.

• For more information about XSLWeb, refer to its documentation: https://
raw.githubusercontent.com/ Armatiek/ xslweb/ master/ docs/
XSLWeb_3_0_Quick_Start.pdf.

• XProc: https://www.w3.org/TR/xproc/ and https://xproc.org/.

• Calabash: https://xmlcalabash.com/

• Piperack: https://xmlcalabash.com/docs/reference/piperack.html

• Cocoon: https://cocoon.apache.org/.

• Servlex: http://servlex.net/.

• About the Tiny Tree model: https:// archive.xmlprague.cz/ 2018/ files/
xmlprague-2018-proceedings.pdf# d6e1190 or http:// www.saxonica.com/
papers/xmlprague-2018mhk.pdf.

XSLWeb: XSLT- and XQuery-only pipelines for the web

29

https://github.com/Armatiek/xslweb
https://raw.githubusercontent.com/Armatiek/xslweb/master/docs/XSLWeb_3_0_Quick_Start.pdf
https://raw.githubusercontent.com/Armatiek/xslweb/master/docs/XSLWeb_3_0_Quick_Start.pdf
https://raw.githubusercontent.com/Armatiek/xslweb/master/docs/XSLWeb_3_0_Quick_Start.pdf
https://www.w3.org/TR/xproc/
https://xproc.org/
https://xmlcalabash.com/
https://xmlcalabash.com/docs/reference/piperack.html
https://cocoon.apache.org/
http://servlex.net/
https://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf#d6e1190
https://archive.xmlprague.cz/2018/files/xmlprague-2018-proceedings.pdf#d6e1190
http://www.saxonica.com/papers/xmlprague-2018mhk.pdf
http://www.saxonica.com/papers/xmlprague-2018mhk.pdf

30

Things We Lost in the Fire
Geert Bormans

Ari Nordström

Abstract

This is about all those markup consulting projects where you realise that
something isn't quite as it should be. Early on, your internal alarm bells are
set off by a technology choice, legacy systems or processes, or maybe internal
conflicts, and you realise there are some hard decisions to make. Yes, you
have bills to pay but is this one of those projects you should stay away
from... or have stayed away from in the first place?

For example, what if you realise that your project was never meant to
succeed? What if a legacy system stands in the way of your every delivera-
ble but is regarded as untouchable? And what if you've been brought in to
solve pressing and immediate problems but office politics, legacy systems,
fundamental misconceptions or all of the above stand in your way? What if
the team's skill set would be a trigger to obstruction and sabotage? What if
people were losing their jobs if you were successful? Or maybe it's simply a
disruptive atmosphere and more than anything it's all about breaking
through that.

We take a hard look at past projects and try to analyse what went wrong
and why, and what we learned from them. Perhaps we can impart some
degree of objectivity on a novice in the field, or at least have him or her think
again. If there is success - flipping adversity into success - we’ll be more
than happy to claim credit.

1. We Call Ourselves Grumpy Old Men
Let us introduce ourselves. We're a pair of somewhat aged markup geeks with a
combined 50 years of consulting experience between ourselves1. This is not the
paper that will reveal all. However, it is the paper that will discuss some of the
implications of those 50 years.

Or at least have a few laughs while reminiscing.
Bitching about our projects, we came to realise that many of our projects fol-

low a pattern. This pattern can be illustrated through the diagram below.
If we would reduce the number of stakeholders in a project to three, there

seems always to be someone (or a team) in power, a team doing the technical
work, and a consultant either providing advice or assisting development.

1A lot of which was spent bitching about what had already been.

31

All three stakeholders have a certain view on the project: where the resources
should go, what technology or approach should be used, and what the best route
to success would be. Obviously the project's succes would depend on the space
where all views meet.

However we came to the conclusion that this zone of succes, for various unde-
fined reasons, often is a “hidden zone” or even a “forbidden zone”.

Figure 1. That Basic Venn Diagram

If you're one of us - a grumpy old man, basically2, with some years of angled
brackets under your belt - you will recognise this diagram, nodding and — per-
haps — bitterly thinking back in time. You will have had many experiences relat-
ing directly to this simple diagram. Memories.

This is a paper about those memories. We'll tell you about some of our memo-
ries, reliving the key points, bitching about what we went through while thinking
— hoping, even — that you'll be nodding right along with us.

2No harm in being a grumpy old woman here.

Things We Lost in the Fire

32

2. The Things That Lit the Matches

2.1. Programming Languages as Religion
Being too religious about a programming language or a vocabulary does not
always help a project.

Some years ago I held a workshop after the audit of an XML transformation
code base. I was invited to do so because the customer found out that very small
functional changes to the existing proprietary transformer really took developers
a lot of time to develop and testing always revealed that a small fix at one point
raised another issue elsewhere.

It was obvious they were using the wrong technology for the job at hand.
I managed to convince the managers in the workshop that a different technol-

ogy (XSLT to no surprise) would pay off quickly, as it would be a much better fit
to the job. After a coffee break we would discuss migration plans, training...

None of the developers present realised I understood the local language, so
near the coffee machine I overheard an agitated discussion about the techology.
One of the developers mentioned firmly that XSLT would only be used "“over his
dead body”"

I was assured by the manager that they would handle the situation without
much problems and we planned migration, training, contracts.

After my flight back home, there was a message on my voicemail thanking me
for the audit and workshop. The project however was cancelled early because of
developer protest.

2.2. The Strict DTD
I wrote a set of DTDs and a bunch of transformation pipelines for a client that
was merging their content with another company’s (as in actually merging two
sets of documents with the same text but with differing tagging). Among the
DTDs was an exchange DTD, an intermediate format when converting from one
format to another, and a somewhat more strict DTD for authoring the merged
content. The two DTDs were related, of course; the exchange format was the
intermediate format used when converting external documents from whatever
source they used to the new authoring DTD.

In my mind, the big job was to move from the external source to the exchange
format. Moving from the exchange format to the authoring format was mostly
about tidying things up. Typically, the first pipeline, from the source to exchange,
would be in the range of 80 or so XSLT steps while the second pipeline, from
exchange to authoring, was 18 steps. The authoring format would still have vari-
ous optional structures, though, and #IMPLIED attributes, as the merge resulted
in inevitable compromises. My plan was to add a Schematron to do some addi-
tional validation and tightening-up, based on the authoring format.

Things We Lost in the Fire

33

But when some of the other company’s devs heard about my plans, they said
“we MUST do a stricter DTD to aid the authors!” Nonplussed, I repeated the bits
about additional validation using a Schematron. Maybe they missed that part.

“No, we MUST have a strict DTD!”
This was getting weird. I explained that there was no way to do that strict

DTD - things would have to remain optional and #IMPLIED, or quite a few docu-
ments wouldn’t be valid. I asked what they had against the DTD+SCH combo.
We’re talking about well-known and well-supported standards. There were no
actual answers at first, only the insistence of a strict DTD, “because authors have
a hard time knowing what to do if the DTD doesn’t properly guide them.”

I went through what’s normally my sales pitch about the usefulness and
adaptability of Schematron rules, and how they can help authors in ways DTDs
cannot. And thinking that I shouldn’t have to be doing this.

Much later, I had a one-on-one with one of the devs and the conversation drif-
ted to Schematrons. And after some discussion, he finally said “Schematron is a
Java library, right?”

2.3. Page by Page
I was tasked with collecting requirements from a number of companies owned by
the same global monster in order to design a single system and associated sche-
mas and processes for handling the documentation and publishing needs of all
those companies.

This one company I talked to needed their manuals published in 27 languages
(EU, mostly, as you might guess) but their output was handled in, shall we say, a
doubtful manner.

Basically, they had one MS Word file per manual page. A 70-page manual
would thus consist of 70 files. They then made sure that the translations of one
page - or file - would fit into that same page, including images and everything.

All 27 languages would thus have the same number of pages, which they
thought was great and really cost-saving because they’d then be able to use the
same ToCs and indexes regardless of language.

And so they thought the natural progression from this state would be to do
those files in XML instead, because writing and translating is supposed to save a
lot of money. Right??

2.4. We've Always Done This
Recently I developed (yet another) MS Word transformer to XML. Yes, customers
do use MS Word for XML authoring.

I was called in because a first attempt had failed over the past few years.

Things We Lost in the Fire

34

This story is about legal publishing. Some acts have books, chapters and sec-
tions, others just have chapters, and yet others have deeper nesting. The informa-
tion model caters for all of that.

The contractor had told the publisher that it was impossible to differentiate
between a chapter in one document or another if chapters would not always be
styled reliably on the same level. For example, the project could only be success-
ful if chapters were always styled as heading3 and sections as heading4. So the
publisher started restyling all their content to be in line with the contractors
requirements... and gave up on that effort after some 1,000 pages out of 200,000.

They realised it would take years just to update the legacy laws, and they
would never be able to publish new laws in time in the future.

2.5. We've Always Done This, Part 2
I inherited the stylesheet development work of an old DITA OT project in the
automotive industry for print and HTML. Challenging, quite a few car types,
over 20 languages including Hebrew and Arab.

For some years by the time I joined, the information architect had defined
every suggestion from the car manufacturer about the printed pages into separate
tasks for stylesheet development. The reviewers of those printed manuals all had
different ideas, sometimes conflicting, and the response of the information archi-
tect had always been to allow for exceptions to be fixed in the stylesheets.

It had never occurred to them to fix anything in the actual DITA content,
except to add another output class every once in a while.

There was a continuous pressure to publish, one car model after another, one
language after another, each one leading to incremental changes to the style-
sheets, causing massive delays in delivering the printed manuals. The DITA OT
developer had indicated he no longer had the time to handle all the work coming
in.

So I was hired for some smaller development tasks and inherited a code base
that had more xsl:if and xsl:when clauses then it had templates. I slowly star-
ted changing the mentality from fix-in-stylesheets (one part time developer) to
fix-in-content (5 full time editors) but never managed to change course in time.

Eventually my contractor lost his contract because of the delays.
The same contractor then got the brilliant idea to start using their expertise

and DITA for a legal content publishing project. I politely passed on that one.

2.6. 90-minute Standups
In the early days of using agile development methods, I worked half time for a
somewhat smaller integrator. A single big project consumed most of the compa-
ny's resources and also charged some of the work out to consultants such as
myself.

Things We Lost in the Fire

35

In order to glue all of teams efforts together we had a daily standup meeting
with about 45 people. The daily standup took an hour, sometimes up to 90
minutes. Working only halftime in the project, I was still attending the standup
every day. Well, I got dismissed from the standup after I started mentioning the
daily meeting explicitly in my timesheets.

In the end, the end-customer cancelled the project for budgetary reasons.

2.7. The Build Is Green

Speaking of agile development, in a project I once worked in there were some
trained “scrum masters” doing the Java development part of the work. They were
extremely keen on using all the techniques they learned in the project: pair pro-
gramming but mainly Test Driven Development.

After setting up a test environment and a big screen, their only focus to the
project became “making the build green”.

At some point we had a couple of rough days in the project, and "the build"
had been red for days. Suddenly the scrum masters started singing “the build is
green, the build is green” and prepared to leave for the evening. Well it had never
been as bad as on that particular point. Everything broke apart, no results to be
found anywhere.

Pointing that out the response was: “You can not spoil the fun, the build is
green”.

They left the office with a suggestion... if there is something you don't like,
you will have to write a test for that.

2.8. Make It Better

We do often get so focused on the technical aspects of a task that we forget about
the legacy or the team.

In a very recent gig the task was very clear: work through the codebase and
make it better. It needs to be more robust and should run faster. Reaching the set
goals would not be extremely difficult. The existing code was already above aver-
age, and improving on some of the techniques used would already make enough
of a difference. However, it was hard to get all the teams to accept the things I
was doing until a sprint evaluation revealed that people disliked the black-box
approach I took.

The development team came up with a plan to have a weekly meeting to dis-
cuss the changes made so far and the reasons for making the change. That com-
municative approach made a huge difference for the atmosphere and
cooperation.

It is all so obvious after the facts, but it taught me to have even more attention
for the different sensitivities in a team.

Things We Lost in the Fire

36

2.9. An XSD for Appearances
I was tasked with designing an XSD for a client. The XSD was supposedly for
describing messages in a system. The work was to be done on site and my con-
tract was for six weeks. Oh, and this was in around 2005, before the advent of the
smartphone, mobile internet, etc.

There was no computer ready for me when I arrived. That is, the hardware
was there but the software wasn’t. It was “on order” from the IT department. I
didn’t have much interaction with the other devs, just specs from an initial imple-
mentation proposal and some mostly irrelevant background information. I also
didn’t have much contact with the other devs; they were busy coding their thing
based on the implementation proposal, plus their own ideas (which I found out
later). The only guy I really talked to was the project manager, mostly because he
was a friend.

Luckily, I had my own personal laptop. No internet connection since this was
on-site and foreign computers were a no-no, so no email, but I had my own soft-
ware for the XML stuff, plus all those implementation proposal specs (which I
pretty much followed to the letter).

I delivered an XSD that did exactly what it was supposed to on time during
week #6, on a floppy disk since I had no means to deliver without an internet con-
nection.

On the Friday of week #6, I had lunch with the project manager. He said
“we’re not going to use your XSD.” And the computer I was appointed never got
its software.

I later realised that the waterfall, up-front approach was probably not what
the devs or the company wanted and their solution never included an XSD. It
was, however, described in the proposal, and so it was preordained which meant
that it had to be included in the project. Yes, that’s me. But my XSD was never
meant to be included in the solution.

2.10. 'oy' DaSIQjaj3

Remember that Strict DTD? It was meant to do both the work of a DTD and what
you'd normally entrust Schematrons and style guides with, but the project was
also very much about office politics.

They wouldn't give an inch on the strictness of that DTD. We couldn't tighten
the DTD because that would invalidate about 10,000 large legal documents.

And then they decided the DTD must be in their local language rather than
English, which was the only language many of our devs understood. I thought
they might as well do the DTD in Klingon, in that case, so very quietly I added
several attributes in Klingon. It took them a couple of months to spot them.

3Klingon for “May you endure the pain”.

Things We Lost in the Fire

37

As I write this, this has been “solved” by introducing a black box that trans-
lates XML between the DB storage format (“loose DTD”) and the authoring for-
mat (the “strict DTD”), every time something needs to be edited. The two are not
fully compatible so there are a lot of problems and more being discovered every
day.

2.11. Open Source as Policy
Around 20 years ago, a publisher invited me to look into the publication process
of one of their somewhat more intensive publications.

There was a team of about 10 developers. This means the department had 10
computers. One of the developers had designed a system that would make the
publication, occupying all the computers in the department full time for three
days.

Incidentally, the solution required Sablotron, Perl and a lot of network com-
munication.

That implied they had to wait for a long weekend to publish. If something
failed during the process, they'd have to wait for the next long weekend. The
publication was often delayed by several months because of that.

I looked into this and could prove that the entire process could be done in just
a few hours on a single machine. However, this required the use of a reasonably
priced licensed software.

The manager refused the proposal because it failed against their open source
software-only policy... and the existing solution did work, didn't it? They contin-
ued to use the existing approach for a couple more years.

2.12. Old Software
Speaking of licensed software, I had to work around missing functionality doing
XSLT development in the DITA Open Toolkit a number of times, simply because
it came bundled with a 10 year-old XSLT2.0 processor. That seemed to be the only
option to use a node-set() extension function without paying a license cost.
Effectively, in several projects over the years, I had to spend multiple hours to

work around a license cost equalling about one of those hours.

2.13. Subscription Services
I am running a subscription service providing some transformed data in specific
formats to subscribers. However I am getting the actual information for this serv-
ice from crawling databases via a web interface. This is all nicely covered by a ten
year old contract with the information provider.

But then, one day the information provider was purchased by an international
consortium and the new owners simply blocked my server's IP address. Informa-

Things We Lost in the Fire

38

tion could now only be obtained through the API they had developed, but they
no longer had room for another partner.

It took me weeks and a good lawyer to force myself into a partner agreement.
Then it took me weeks to replace the crawler with a service that communicated
with the API.

During that period I lost half of the subscribers to a service that was supposed
to update at least weekly.

2.14. You Can Choose Any Software You Want

A well-known global automotive manufacturer needed to XML-ify their after-
market documentation using a system they wanted us to design and build (at the
time they mostly used PageMaker for their aftermarket docs). I was first out, to
analyse requirements, write DTDs, and recommend ways to do the system so it
would support everything in a really, really cool way.

My analysis of the existing documents (glovebox manuals, accessory cata-
logues, warranty booklets, etc) suggested a lot of savings to be made by modular-
ising the information, aided by some light profiling (different engines, gearboxes,
etc), linking, and general standardisation of processing. I wrote a set of DTDs
using all the then-modern technologies such as extended XLink4 and set up a list
of cool things we could do with the system.

This is when they came back with a bunch of requirements:
• You can choose any editor you want but it has to be [X].
• You can choose any underlying DB you want but it all needs to be based on

[Y].
• You can choose any formatting engine you like but it has to be [Z] (but please

use any standards you want).
• Oh, and we need you to move all the old SGML stuff we have for service info,

a parts DB, and the like to the new system as well. Which means going from
SGML to XML, migrating old DBs, etc.

Let’s see. No extended XLink (because of no way to properly handle out-of-line
lookups in the editor OR the DB). No inline CDATA-based links either (because the
editor did not do them). Which meant generating ID/IDREF pairs in a really mad
process whenever handling the information, plus a LOT of other compromises.

The new system was added a document management layer that required hor-
rible processing attributes on many elements (this is how we found out that the
editor's parser at the time included a hard 8,000-character attribute length limit).
The first login in test took about 30 minutes. In the words of the software archi-
tect: “This could have been a really fast system without [Y].” I said something in a

4Xinclude wasn’t really a thing at that point.

Things We Lost in the Fire

39

similar vein about [X], and the guy who did most of the formatting cursed about
[Z].

The system ended up costing about ten or fifteen times the budget, required a
LOT of bug fixing (the cost of which wasn't part of the inflated budget), but it's
supposedly still in use.

2.15. Not Hawt Enough
By the way, that well-known automotive maker's technical writers were an opin-
ionated bunch. They had a look at the early output from formatting engine [Z]
and decided the driver’s manuals couldn't be done in XML because there would
be compromises in the layout and the manuals need to look pretty. Never mind
that they went to 42 languages and, by not using XML, added a 70% cost to every
single manual produced. PageMaker it is.

And no, they didn't want the accessory catalogues in XML either, for similar
reasons.

2.16. Those Were the Days
I was tasked with writing an XSD for a company that wanted to move away from
this ancient COBOL monster with heavily typed data ensuring that they’d never
go past a couple of Megabytes, created in a time when every byte cost a fortune.

Yet, it quickly became apparent that they chose XSDs because the data descri-
bed by them can be typed… just like before. In the end, I delivered a schema that
rather faithfully reproduced that old COBOL monster but with no additional
value.

This is not about a legacy system as much as it is about a legacy mindset. I
could have avoided the pain simply by asking “what do you want to achieve with
your new XSD?””

2.17. Latin 1 and Entitites
Publisher X stores all of their documents - hundreds of thousands of them - in an
old, heavily customised Oracle DB. They’ve built a document management layer
on top of the thing but they don’t really have proper versioning on either docu-
ments or the DTDs that govern them. They still run OmniMark scripts to do vali-
dation, some light processing and the like.

Oh, and it’s all in Latin 1, with about 250 or so general entities. This includes
the Omnimark scripts.

Long before I first knew the company, they’ve been wanting to move to UTF-8
but the management and various project decisions have consistently held them
back. They’ve bought companies and merged entire content libraries with their
own, and it’s all been converted to… Latin 1. On an office whiteboard, there is a

Things We Lost in the Fire

40

counter for the number of days since the last encoding-related error that never
wanders far from “1”; in other words, there are issues almost daily, ranging from
web pages that refuse to format to documents that refuse to load to that ancient
Oracle DB.

Yet, the company handles this technical debt mostly by ignoring it. They’ve
built new presentation systems and increased their print offering, and now
they’re about to add a MarkLogic DB on the side. MarkLogic will mirror Oracle
and will be used for analysis to begin with; in time, it might replace the Oracle
monster.

One assumes that they’ll somehow incorporate Latin 1 and DTDs in it,
though, since while they’re always saying that they MUST move to Unicode and
UTF-8, everything else always comes first.

3. Opposing Views

3.1. Sometimes SGML Is What You Want

I was part of a consulting effort to deliver a new system to an aerospace company
and among the first in to take a long hard look at their current information set,
most of which was early S1000D SGML. This was close to 20 years ago.

After careful consideration, I realised that them using SGML was just fine; no
need to author in XML, no need to write an XML DTD or use the XML version of
the standard (S1000D back then did not yet have a proper XML DTD or schema,
or proper support for it) and migrate the content. All we needed was a modern
approach to authoring, managing, and storing the SGML, and a bunch of conver-
sions to XML and other formats when publishing. Their suppliers all used SGML,
and they delivered to companies and organisations that all used SGML. No need
to change any of this; it would be costly and unnecessary, and we’d have to con-
vert back to SGML anyway.

Not to mention that the client was fine with SGML, too. The issue was not
SGML, the issue was an aging system that couldn’t keep up.

My employer was in the process of merging with another consultancy, how-
ever, and the players all needed to score. They both liked Documentum and were
partners with them, so there were political advantages to using it. For the busi-
ness, that is; never mind the client. So they decided they need XML because XML
is modern and new and hip, and it will brush your teeth in the evening and wake
you up with coffee the next day. And besides, Documentum wouldn’t do SGML.

The process dragged on and on, and I was eventually pulled from the project.
I left the company not too long after. The thing they ended up building was an
absolute disaster that was eventually settled in court while the client bought a
competitor’s product instead.

Things We Lost in the Fire

41

3.2. Sometimes Word Is What You Want
Most legal publisher use Word in one way or another. I worked with one that
published Precedents document templates for lawyers in Word format, in spite of
the Word files actually being produced in XML, added some intricate and very
clever tagging, and then converted to Word. As an XML geek, I was dead against
this, of course. Word seemed like an unnecessary extra layer.

But when I put aside my pride and supposed XML competence, and really
started thinking about the process, I realised how wrong I was: the end users are
non-technical lawyers and it would be a lot more complex (technically and politi-
cally) to get them to use an XML tool, regardless of all the cool things we could
do the make life easier for them.

Sometimes MS Word is what you really want.

4. Things We Found among the Ashes
It goes without saying. First rule of thumb: be pragmatic. Not only do you have
to make a living. Sometimes you need to swallow your pride and go for the poor
solution. Trying to push the purist solution you know would work, might make
you sleep better. But at the end of the day, do whatever it takes to make things
work... if if you know deep down it is stupid.

Drink a lot of coffee... or beer. Companies do have organisational charts and
official guidelines. But it is the unwritten rules in the workplace and the personal
connections that will tell you so much more. You gain valuable knowledge and
better grasp any political sensitivities by listening to coworkers in an informal
context.

Don't ever engage in religious discussions. When “forces” at your customer's
are convinced that their technology is the one to use, use it. You can bring all the
arguments you want to the table. Objective criteria won't be sufficient to convert
the religious inspired.

Choose your battles, even if you risk frustration over your work.
But do engage in discussions about licenses. Too many companies have an

open source software policy because they think it is the same as “free software”.
Valuable time is lost in projects working around restrictions in basic freeware.

For a small fee one can often buy a lot of robustness, functionality, performance,
etc. But also, someone has to develop and maintain the tools you use. One should
always consider the long term validity of what you build and bring.

For the long-term benefit of your customer, this is a battle worth fighting.
Don't bargain on your price. Failure is inherent if you bridge a large gap in

price discussions.
You sell value, not hours. If the customer thinks you're valued lower than you

do yourself and you agree on a compromise higher than theirs and lower than
yours, you are about to be hired for the wrong job. They will think they are pay-

Things We Lost in the Fire

42

ing you too much for what you do, and you will be frustrated because you know
they make you do things for less than they should be paying.

Get your responsibilities straight from the start.
Customers often don't realize what exactly they are hiring you for. A quick

development task at a fair price, will most likely lead to taking over an architect
role for a longer time for the wrong price. Try to discover early what the roles are,
and guide your boundaries

Organize yourself to be able to get out quickly by offering a solid long term
self sustainability.

Develop and document whatever you do as if you won't come back tomorrow.
You don't want these projects to continue to haunt you for the rest of your life.

And if they do haunt you... you've made sure you can get back in with a smile
Accept failure gracefully. You can only do the best you can do. Some projects

simply fail. Because of you or despite of you.
We are all very proud people. Yet, there is no shame in admitting that one

project or another has failed... and that you might have played a role in that fail-
ure. Maybe you did not push enough for a change, maybe you did not pay atten-
tion.

Maybe you (shudder) were wrong.

Things We Lost in the Fire

43

44

Sequence alignment in XSLT 3.01

David J. Birnbaum
Department of Slavic Languages and Literatures, University of Pittsburgh (US)

<djbpitt@gmail.com>

Abstract

The Needleman Wunsch algorithm, which this year celebrates its quinqua-
genary anniversary, has been proven to produce an optimal global pairwise
sequence alignment. Because this dynamic programming algorithm requires
the progressive updating of mutually dependent variables, it poses chal-
lenges for functional programming paradigms like the one underlying
XSLT. The present report explores these challenges and provides an imple-
mentation of the Needleman Wunsch algorithm in XSLT 3.0.

Keywords: sequence alignment, xslt

1. Introduction

1.1. Why sequence aligment matters
Sequence alignment is a way of identifying and modeling similarities and differ-
ences in sequences of items, and has proven insightful and productive for
research in both the natural sciences (especially in biology and medicine, where it
is applied to genetic sequences) and the humanities (especially in text-critical
scholarship, where it is applied to sequences of words in variant versions of a
text). In textual scholarship, which is the domain in which the present report was
developed, sequence alignment assists the philologist in identifying locations
where manuscript witnesses agree and where they disagree.2 These agreements
and disagreements, in turn, provide evidence about probable (or, at least, candi-
date) moments of shared transmission among textual witnesses, and thus serve as
evidence to construct and support a philological argument about the history of a
text.3

1I am grateful to Ronald Haentjens Dekker for comments and suggestions.
2Witness, sometimes expanded as manuscript witness, is a technical term in text-critical scholarship for
a manuscript that provides evidence of the history of a text.
3For an introduction to the evaluation of shared and divergent readings as a component of textual
criticism see Trovato 2014.

45

1.2. Biological and textual alignment
Insofar as biomedical research enjoys a larger scientific community and richer
funding resources than textual humanities scholarship, it is not surprising that
the literature about sequence alignment, and the science reported in that litera-
ture, is quantitatively greater in the natural sciences than in the humanities. Fur-
thermore, insofar as all sequence alignment is similar in certain mathematical
ways, it is both necessary and appropriate for textual scholars to seek opportuni-
ties to adapt biomedical methods for their own purposes. For those reasons, the
present report, although motivated by text-critical research, focuses on a method
first proposed in a biological context and later also applied in philology.

This report does not take account of differences in the size and scale of biolog-
ical and philological data, but it is nonetheless the case that alignment tasks in
biomedical contexts, on the one hand, and in textual contexts, on the other, typi-
cally differ at least in the following ways:
• Genetic alignment may operate at sequence lengths involving entire chromo-

somes or entire genomes, which are orders of magnitude larger than the larg-
est real-world textual alignment tasks.

• Genetic alignment operates with a vocabulary of four words (nucleotide
bases, although alignment may also be performed on codons), while textual
alignment often involves a vocabulary of hundreds or thousands of different
words.
The preceding systematic differences in size and scale invite questions about

whether the different shape of the source data in the two domains might invite
different methods. Especially in the case of heuristic approaches that are not
guaranteed to produce an optimal solution, is it possible that compromises
required to make data at large scale computationally tractable might profitably be
avoided in domains involving data at a substantially smaller scale? Although the
present report does not engage with this question, it remains part of the context
within which solutions to alignment tasks in different disciplines ultimately
should be assessed.

1.3. Global pairwise alignment
The following two distinctions—not between biological and textual alignment,
but within both domains—are also relevant to the present report:
• Both genetic and textual alignment tasks can be divided into global and local

alignment. The goal of global alignment is to find the best alignment of all
items in the entire sequences. In textual scholarship this is often called collation
(cf. e.g., Frankenstein variorum reader). The goal of local alignment is to find
moments where subsequences correspond, without attempting to optimize the
alignment of the entire sequences. A common textological application of local

Sequence alignment in XSLT 3.0

46

alignment is text reuse, e.g., finding moments where Dante quotes or para-
phrases Ovid (cf. Van Peteghem 2015, Intertextual Dante).

• Both genetic and textual alignment tasks may involve pairwise alignment or
multiple alignment. Pairwise alignment refers to the alignment of two sequen-
ces; multiple alignment refers to the alignment of more than two sequences. In
textual scholarship multiple alignment is often called multiple-witness align-
ment.
The Needleman Wunsch algorithm described and implemented below has

been proven to identify all optimal global pairwise alignments of two sequences,
and it is especially well suited to alignment tasks where the two texts are of com-
parable size and are substantially similar to each other. The present report does
not address either local alignment or multiple (witness) alignment.

1.4. Overview of this report

This report begins by introducing the use of dynamic programming methods in
the Needleman Wunsch algorithm to ascertain all optimal global alignments of
two sequences. It then identifies challenges to implementing this algorithm in
XSLT and discusses those challenges in the context of developing such an imple-
mentation. Original code discussed in this report is available at https://
github.com/djbpitt/xstuff/tree/master/nw.

It should be noted that the goal of this report, and the code underlying it, is to
explore global pairwise sequence alignment in an XSLT environment. For that
reason, it is not intended that this code function as a stand-alone end-user textual
collation tool. There are two reasons for specifying the goals and non-goals of the
present report in this way:
• Textual collation as a philological method involves more than just alignment.

For example, the Gothenburg model of textual collation, which has been
implemented in the CollateX [CollateX] and Juxta [Juxta] tools, expresses the
collation process as a five-step pipeline, within which alignment serves as the
third step. [Gothenburg model]

• Real-world textual alignment tasks often involve more than two witnesses,
that is, they involve multiple-witness, rather than pairwise, alignment. While
some approaches to multiple-witness alignment are implemented as a pro-
gressive or iterative application of pairwise alignment, these methods are sub-
ject to order effects. Ultimately, order-independent multiple-witness
alignment is an NP hard problem with which the present report does not seek
to engage.4

4Multiple sequence alignment (Wikipedia) provides an overview of multiple sequence alignment, the
term in bioinformatics for what philologists refer to as multiple-witness alignment.

Sequence alignment in XSLT 3.0

47

https://github.com/djbpitt/xstuff/tree/master/nw
https://github.com/djbpitt/xstuff/tree/master/nw

2. About sequence alignment

2.1. Alignment and scoring
An optimal alignment can be defined as an alignment that yields the best score,
where the researcher is responsible for identifying an appropriate scoring method.
Relationships involving individual aligned items from a pair of sequences can be
categorized as belonging to three possible types for scoring purposes:
• Items from both sequences are aligned and are the same. This is called a

match. If the two entire sequences are identical, all item-level alignments are
matches.

• Items from both sequences are aligned but are different. This is called a mis-
match. Mismatches may arise in situations where they are sandwiched
between matches. For example, given the input sequences “The brown koala”
and “The gray koala”, after aligning the words “The” and “koala” in the two
sequences (both alignments are matches), the color words sandwiched
between them form an aligned mismatch.

• An item in one sequence has no corresponding item in the other sequence.
This is called a gap or an indel (because it can be interpreted as either an inser-
tion in one sequence or a deletion from the other). Gaps are inevitable where
the sequences are of different lengths, so that, for example. given “The gray
koala” and “The koala”, the item “gray” in the first sequence corresponds to a
gap in the second. Gaps may also occur with sequences of the same length; for
example, if we align “The brown koala lives in Australia” with “The koala
lives in South Australia”, both sequences contain six words, but the most nat-
ural alignment, with a length of seven items and one gap in each sequence, is:

Table 1. Alignment example with gaps

The brown koala lives in Australia
The koala lives in South Australia

A common scoring method is to assign a value of 1 to matches, -1 to mis-
matches, and -1 to gaps. These values prefer alignments with as many matches as
possible, and with as few mismatches and gaps as possible. But alternative scor-
ing methods might, for example, assign a greater penalty to gaps than to mis-
matches, or might assign different penalties to new gaps than to continuations of
existing gaps (this is called an affine gap penalty).

The scoring method determines what will be identified as an optimal align-
ment for a circular reason: optimal in this context is defined as the alignment with
the best score. This means that the selection of an appropriate scoring method
during philological alignment should reflect the researcher’s theory of the types

Sequence alignment in XSLT 3.0

48

of correspondences and non-correspondences that are meaningful for identifying
textual moments to be compared. In the examples below we have assigned a
score of 1 for matches, -1 for mistmatches, and -2 for gaps. This scoring system
minimizes gaps.

2.2. Sequence alignment algorithms

A naïve, brute-force approach to sequence alignment would construct all possible
alignments, score them, and select the ones with the best scores. This method has
exponential complexity, which makes it unrealistic even for relatively small real-
world alignment tasks. [Bellman 1954 2] Alternatives must therefore reduce the
computational complexity, ideally by reducing the search space to exclude from
consideration in advance all alignments that cannot be optimal. Where this is not
possible, a heuristic method excludes from consideration in advance alignments
that are unlikely to be optimal. Heuristic methods entail a risk of inadvertently
excluding an optimal alignment, but in the case of some computationally com-
plex problems, a heuristic approach may be the only realistic way of reducing the
complexity sufficiently to make the problem tractable.

In the case of global pairwise alignment, the Needleman Wunsch algorithm,
described below, has been proven always to produce an optimal alignment,
according to whatever definition of optimal the chosen scoring method instanti-
ates. Needleman Wunsch is an implementation of dynamic programming, and in
the following two sections we first describe dynamic programming as a paradigm
and then explain how it is employed in the Needleman Wunsch algorithm. These
explanations are preparatory to exploring the complications that dynamic pro-
gramming, both in general and in the context of Needleman Wunsch, pose for
XSLT and how they can be resolved.

3. Dynamic programming and the Needleman Wunsch algorithm

3.1. Dynamic programming

Dynamic programming, a paradigm developed by Richard Bellman at the Rand
Corporation in the early 1950s, makes it possible to express complex computa-
tional tasks as a combination of smaller, more tractable, overlapping ones.5 A
commonly cited example of a task that is amenable to dynamic programming is
the computation of a Fibonacci number. Insofar as every Fibonacci number
beyond the first two can be expressed as a function of the two immediately pre-
ceding Fibonacci numbers, a naïve top-down approach to computing the value of
the nth Fibonacci number would start with n and compute the two preceding val-

5For more information about dynamic programming see Bellman 1952 and Bellman 1954.

Sequence alignment in XSLT 3.0

49

ues. This requires computing all of their preceding values, which requires com-
puting their preceding values, etc., which ultimately leads to computing the same
values repeatedly. A dynamic bottom-up computation, on the other hand, would
calculate each smaller number only once and then use those values to move up to
larger numbers.6

Sequence alignment meets the two requirements for a problem to be amenable
to dynamic programming.[Grimson and Guttag] First, it satisfies optimal substruc-
ture, which means that an optimal solution to a problem can be reached by deter-
mining optimal solutions to its subproblems. Second, it satisfies overlapping
subproblems, where overlapping means “common” or “shared”, that is, that the
same subproblems recur repeatedly. In the Fibonacci example above, the compu-
tation of a higher Fibonacci number depends on the computation of the two pre-
ceding numbers (optimal substructure), and the same preceding numbers are
used repeatedly in a top-down solution (overlapping subproblems). In the case of
pairwise sequence alignment, the Needleman Wunsch algorithm, discussed
below, observes both optimal substructure (an optimal alignment is found by
finding optimal alignments of subsequences) and overlapping subproblems (the
same properties of these subsequences are reused to solve multiple subproblems).

3.2. The Needleman Wunsch algorithm
The history of the Needleman Wunsch algorithm is described by Boes as follows:

We will begin with the scoring system most commonly used when introducing the
Needleman-Wunsch algorithm: substitution scores for matched residues and lin-
ear gap penalties. Although Needleman and Wunsch already discussed this scor-
ing system in their 1970 article [NW70], the form in which it is now most
commonly presented is due to Gotoh [Got82] (who is also responsible for the affine
gap penalties version of the algorithm). An alignment algorithm very similar to
Needleman-Wunsch, but developed for speech recognition, was also independently
described by Vintsyuk in 1968 [Vin68]. Another early author interested in the
subject is Sellers [Sel74], who described in 1974 an alignment algorithm minimiz-
ing sequence distance rather than maximizing sequence similarity; however Smith
and Waterman (two authors famous for the algorithm bearing their name) proved
in 1981 that both procedures are equivalent [SWF81]. Therefore it is clear that
there are many classic papers, often a bit old, describing Needleman-Wunsch and
its variants using different mathematical notations. (Boes 2014 14; pointers are to
Needleman and Wunsch 1970, Gotoh 1982, Vintsyuk 1968, Sellers 1974, and
Smith et al. 1981)

6The implementation of dynamic programming according to a bottom-up organization is called tabu-
lation. A top-down dynamic approach would perform all of the recursive computation at the begin-
ning, but memoize (that is, store and index) the sub-calculations, so that they could be looked up and
reused, without having to be recomputed, when needed at lower levels.

Sequence alignment in XSLT 3.0

50

Boes further explains that Needleman Wunsch “is an optimal algorithm, which
means that it produces the best possible solution with respect to the chosen scor-
ing system. There [exist] also non-optimal alignment algorithms, most notably
the heuristic methods …” [Boes 2014 13] “Non-optimal” here means not that the
method is incapable of arriving at an optimal solution, but that it is not guaranteed
to do so.

Performing alignment according to the Needleman Wunsch dynamic pro-
gramming algorithm entails the following steps:7

1. Construct a grid with one of the sequences to be aligned along the top, label-
ing the columns, and the other along the left, labeling the rows.

2. Determine a scoring system. Here we score matches as 1, mismatches as -1,
and gaps as -2.

3. Insert a row at the top, below the labels, with sequential numbers reflecting
consecutive multiples of the gap score. For example, if the gap score value is
-2, the cell values would be 0, -2, -4, etc. Starting from the 0, assign similar
values to a column inserted on the left, after the row labels. By this point the
grid should look like:

Table 2. Initial grid for Needleman Wunsch

 k o a l a
 0 -2 -4 -6 -8 -10
c -2
o -4
l -6
a -8

4. Starting in the upper left of the table body, where the first items of the two
sequences intersect, and proceeding across each row in turn, from top to bot-
tom, write a value into each cell. That value should be the highest of the fol-
lowing three candidate values:
• The value in the cell immediately above plus the gap score.
• The value in the cell immediately to the left plus the gap score.
• The value in the cell immediately diagonally above to the left plus the

match or mismatch score, depending on whether the intersecting sequence
items constitute a match or a mismatch.
For example, the first cell is the intersection of the “k” at the top with “c”

at the left, which is a mismatch, since they are different. The cell immediately

7For a more detailed tutorial introduction see Global alignment.

Sequence alignment in XSLT 3.0

51

above has a value of -2, which, when augmented by the gap score, yields a
value of -4. The same is true of the cell immediately to the left. The cell diago-
nally above and to the left has a value of 0, which, when combined with the
mismatch score, yields a value of -1. Since that is the highest value, write it
into the cell. Proceed similarly across the first row, then traverse the second
row from left to right, etc., ending in the lower right. The completed grid
should look like:

Table 3. Completed grid for Needleman Wunsch

 k o a l a
 0 -2 -4 -6 -8 -10
c -2 -1 -3 -5 -7 -9
o -4 -3 0 -2 -4 -6
l -6 -5 -2 -1 -1 -3
a -8 -7 -4 -1 -2 0

We fill the cells in the specified order because each cell depends on two values
from the row above (the cell immediately above and the one diagonally above
and to the left) and the preceding cell of the same row. Filling in the cells from
left to right and top to bottom ensures that these values will be available when
needed. For reasons discussed below, these ordering dependencies pose a
challenge for an XSLT implementation.

5. Starting in the lower right corner, trace back through the sources that deter-
mined the score of each cell. For example, the 0 value in the lower right inheri-
ted from the upper diagonal left because the -1 that was there plus the match
score of 1 yielded a 0, and that value was higher than the scores coming from
the cell immediately above (-3 plus the gap score of -2 yields -5) or to imme-
diately to the left (-2 plus the gap score of -2 yields -4). In the following
image we have 1) added arrows indicating the source of each value entered
into the grid and 2) shaded match cells green and mismatch cells pink:

Sequence alignment in XSLT 3.0

52

Figure 1. Completed alignment grid
6. At each step along this traceback path, starting from the lower right, if the

step is diagonal and up, align one item from the end of each sequence. If the
step is to the left, align an item from the sequence at the top with a gap (that
is, do not select an item from the sequence at the left). If the step is up, align
an item from the sequence at the left with a gap. In case of ties, the choices
with the highest value are all optimal and can be pursued as alternatives. In
the present case, this process produces the following single optimal align-
ment:

Figure 2. Alignment table

4. The challenges of dynamic programming and XSLT
XSLT, at least before version 3.0, plays poorly with dynamic programming
because each step in a dynamic programming algorithm depends on values cal-
culated at preceding steps. Functional programming of the sort supported by
XSLT <xsl:for-each> does not have access to these incremental values; if we try
to run <xsl:for-each> over all of the cells and populate them according to the
values before and above them, those neighboring values will be the values in
place initially, that is, null. The reason is that <xsl:for-each> is not an iterative
instruction: it orders the output according to the input sequence, but it does not
necessarily perform the computation in that order. This is a feature because it means
that such instructions can be parallelized, since no step is dependent on the out-
put of any other step. But it also means that populating the Needleman Wunsch
grid in XSLT requires an alternative to <xsl:for-each>.

Tennison draws our attention to this issue in her XSLT 2.0 implementations of
a dynamic programming algorithm to calculate Levenshtein distance (Tennison
2007a, Tennison 2007b), and with respect to constructing the grid, the algorithms
for Levenshtein and Needleman Wunsch are analogous. The principal difference
is that Levenshtein cares only about the value of the lower right cell, and there-

Sequence alignment in XSLT 3.0

53

fore does not require the traceback steps that Needleman Wunsch uses to perform
the alignment of actual sequence items.

4.1. Why recursion breaks
The traditional way to mimic updating a variable incrementally in XSLT is with
recursion, cycling the newly updated value into each recursive call. The challenge
to this approach is that deep recursion can consume enough memory to overflow
the available stack space and crash the operation. XSLT processors can work
around this limitation with tail call optimization, which enables the processor to
reduce the consumption of stack space by recognizing when stack values do not
have to be preserved. Tail call optimization is finicky, however, first because not
all XSLT implementations support it, second because functions have to be written
in a particular way to make it possible, and third because some operations that
can be understood as tail recursive may not look that way to the processor, and
may therefore fail to be optimized.

The important insight with respect to recursion in Tennison’s second engage-
ment with the Levenshtein problem (Tennison 2007b) is that it is possible to con-
struct the grid values for Levenshtein (and therefore also for Needleman Wunsch)
without recurring on every cell. By writing values into the grid on the anti-diago-
nal (diagonals that run from bottom left to top right), instead of across each row
in turn, as is traditional, Tennison is able to calculate all values on an individual
anti-diagonal at the same time, since the cells on any single anti-diagonal have no
mutual dependencies.8 The absence of dependencies within an anti-diagonal
means that Tennison can use <xsl:for-each>, instead of recursion, to compute
all of the values within each anti-diagonal, and recur only as she moves to a new
anti-diagonal. The computational complexity of populating the grid remains
O(mn) (that is, essentially quadratic), since it is still necessary to calculate values
for each cell individually, and the total number of cells is the product of the
lengths of the two sequences, but Tennison’s implementation reduces the recur-
sion from the number of cells to the number of anti-diagonals, which is n + m - 1,
that is, linear with respect to the total number of items in the two sequences. This
implementation also reduces the storage complexity; because each anti-diagonal
depends only on the two immediately preceding ones, the recursive steps do not
have to pass forward the entire state of the grid.

The potential improvement in computational efficiency that may result from
parallelization in an implementation “on the diagonal” was identified initially by
Muraoka 1971 (160), who used the term “wave front” to describe the sequential

8Not only are there no mutual dependencies within an anti-diagonal, but all of the information nee-
ded to process an entire anti-diagonal is available simultaneously from only the two preceding anti-
diagonals, without any dependency on earlier ones. This property contributes to the scalability of our
implementation in ways that will be discussed below.

Sequence alignment in XSLT 3.0

54

processing of anti-diagonals, and then explored further by Wang 2002 (8) and
Naveed et al. 2005 (3–4).9 Although these earlier researchers had previously
reported that items on the anti-diagonal could be processed in parallel, it was
Tennison who recognized that this observation could also be used to reduce the
depth of recursion in XSLT.

4.2. Iteration to the rescue
Tennison’s anti-diagonal implementation reduces the depth of recursion, but does
not eliminate recursion entirely: because the values in each anti-diagonal con-
tinue to depend on the values in the two immediately preceding anti-diagonals, it
nonetheless requires recursion on each new anti-diagonal. The reduction in the
depth of recursion from quadratic to linear scales impressively; for example, with
two 20-item sequences and 400 cells, the traditional method would have recurred
400 times, while the anti-diagonal method makes only 39 recursive function calls.
In XSLT 3.0, however, it is possible to use <xsl:iterate> to avoid recursive cod-
ing entirely:

[xsl:iterate] is similar to xsl:for-each, except that the items in the input sequence
are processed sequentially, and after processing each item in the input sequence it
is possible to set parameters for use in the next iteration. It can therefore be used to
solve problems that in XSLT 2.0 require recursive functions or templates. (Saxon
xsl:iterate)

The use of <xsl:iterate>, which was not part of the XSLT 2.0 that was available
to Tennison in 2007, in place of the recursion that she was forced to retain, thus
observes her wise recommendation to “try to iterate rather than recurse when-
ever you can” (Tennison 2007b).

4.3. Processing the anti-diagonal
The classic description of Needleman Wunsch differs from Levenshtein by requir-
ing that the entire grid be available at the end of its construction so that it can be
traversed backwards to perform the actual item alignment (Levenshtein cares
only about the final value), but the two algorithms agree in the fact that cells on
each consecutive anti-diagonal can be constructed using information from only
the two immediately preceding anti-diagonals. Within our <xsl:iterate>
instruction we return these two preceding anti-diagonals as parameters called
$ult (immediately preceding) and $penult (preceding $ult), promoting the pre-
vious $ult to the new $penult on each iteration and adding the current anti-

9Wang 2002 also uses the term “wave front” (two words), as introduced by Muraoka; Maleki et al.
2014 modify this as “wavefront” and introduce the term “stage” to refer to the individual anti-diago-
nals.

Sequence alignment in XSLT 3.0

55

diagonal as the new $ult. We attempt to improve the retrieval of these preceding
cells while computing new values by using <xsl:key> with a composite @use
attribute that indexes the two anti-diagonals that constitute the search space
according to the @row and @col attribute values of each cell. At a minimum, each
new cell holds information, in attributes, about its row, column, and score (all
used to compute the values of subsequent cells) and the prior cell that was used
to determine that score (diagonal, up, or left; used for the backward tracing of the
path once construction has been completed); we also store some additional val-
ues, which we discuss below.

It is possible for more than one neighboring cell to tie for highest value, and
because the task that motivated this development required only an optimal align-
ment, and not all such alignments, we record only one optimal path to each cell,
resolving ties by arbitrarily favoring diagonal, then left, and only then upper
sources. There is, however, nothing about the method that would prohibit record-
ing and later processing multiple paths, and thus identifying all optimal align-
ments.

In the Needleman Wunsch (and also Levenshtein) context, then, all values on
the same anti-diagonal can be calculated in parallel, and Tennison’s use of
<xsl:for-each> in her improved code in Tennison 2007b to process the anti-
diagonal is compatible with this observation because <xsl:for-each> can be par-
allelized. Whether it is executed in parallel, however, is often unpredictable, since
standard XSLT 3.0 does not give the programmer explicit control over processes
or threads in the same way as other languages (cf. Python’s multiprocessing
module). However, Saxon EE (although not PE or HE) provides a custom
@saxon:threads attribute that allows the developer to specify that an <xsl:for-
each> element should be processed in parallel. The documentation explains that:

This attribute may be set on the xsl:for-each instruction. The value must be an
integer. When this attribute is used with Saxon-EE, the items selected by the select
expression of the instruction are processed in parallel, using the specified number
of threads. (Saxon saxon:threads)

The Saxon documentation adds, however, that:
Processing using multiple threads can take advantage of multi-core CPUs. How-
ever, there is an overhead, in that the results of processing each item in the input
need to be buffered. The overhead of coordinating multiple threads is proportion-
ally higher if the per-item processing cost is low, while the overhead of buffering is
proportionally higher if the amount of data produced when each item is processed
is high. Multi-threading therefore works best when the body of the xsl:for-each
instruction performs a large amount of computation but produces a small amount
of output. (Saxon saxon:threads)

The computation of a cell score produces a small amount of output, but it also
involves only a small amount of computation (compared to read/write memory

Sequence alignment in XSLT 3.0

56

operations). As we discuss below, in this case parallelization did not lead to relia-
bly improved performance.

4.4. Save yourself a trip … and some space

The process of constructing the scoring grid for Needleman Wunsch on the anti-
diagonal is identical to that of constructing the grid for Levenshtein, but, as was
noted above, the key difference is what happens next: Levenshtein cares only
about the value of the lower right cell, and therefore does not need to walk back
through the grid the way Needleman Wunsch does to align the actual sequences.
This means that an anti-diagonal implementation for a Levenshtein distance cal-
culation can throw away each anti-diagonal once it is no longer needed, and the
single-cell anti-diagonal at the lower right will contain the one piece of informa-
tion the function is expected to return: the distance between the two sequences.
An implementation of Needleman Wunsch according to the classic description of
the method, however, cannot economize on space in this way, which means that
although Needleman Wunsch and Levenshtein have comparable computational
complexity, classic Needleman Wunsch has quadratic storage complexity because
it preserves and passes along the entire grid, while Tennison’s anti-diagonal Lev-
enshtein implementation has linear storage complexity because it throws away
anti-diagonals as soon as it no longer needs them, and the length of the diagonal
is linear with respect to the lengths of the input sequences.

The storage requirements of Needleman Wunsch are quadratic, however, only
as long as the entire grid must be preserved for backward traversal at the end of
the construction process, and the only information needed for that traversal is the
direction (diagonal, left, up) of the optimal path steps. At each step along that tra-
versal we do not need to know the score and we do not need the row and column
labels. This means that we can avoid the backward traversal of the grid entirely if
we write the cumulative full path to each cell into the cell alongside its score,
instead just the source of the most recent path step, so that the lower right cell
will already contain information about the full path that led to it. We can then use
those directional path steps to construct an alignment table on the basis of the
original sequences, without further reference to the grid. Avoiding the backwards
trip through the grid after its completion comes at the expense of writing full
path information into every cell during the construction of the grid, which entails
extra computation and storage, even though we will ultimately use this informa-
tion only from the one lower right cell for the final alignment. In compensation
for storing that additional information in the cells, though, we no longer need to
pass the entire cumulative grid through the iterations, so the additional paths
must be stored only for the three-anti-diagonal life cycle of each cell. The section
below documents the improvement this produces with respect to both execution
time and memory requirements.

Sequence alignment in XSLT 3.0

57

4.5. Performance

We implemented the method described above using vanilla XSLT 3.0 of the sort
that can be executed in Saxon HE without any proprietary extensions. As a small
optimization, because each cell is used an average of three times to compute new
cell values (once each as diagonal, left, and upper), and the left and upper behav-
iors are the same (sum the score of the cell and the gap penalty), we perform that
sum operation just once and store it when the cell is created, instead of comput-
ing it twice on the two occasions when it is used.10

We then revised the code for Saxon EE with two further types of modification:

• We use the @saxon:threads attribute with an arbitrary value of 10 on our
<xsl:for-each> elements. This ensures that the body of the <xsl:for-each>
element will be parallelized, although 1) regardless of the value of the
@saxon:threads attribute, the number of computations that can actually be
performed simultaneously depends on the number of cores provided by the
CPU and on other demands on CPU resources, and 2) parallelization
improves performance only when the benefit of parallel executation is greater
than the overhead of managing it. In practice, in this case the use of
@saxon:threads produced no reliable improvement in performance; see the
discussion below.

• We use schema-aware processing with type annotations (using the @type
attribute) on the temporary <cell> attributes that are used in computation,
which means principally the @row and @col (column) attributes, which we
type as xs:integer. By default attributes on elements that do not undergo
validation are typed as xs:untypedAtomic, and without our explicit typing we
had to convert them explicitly to numerical values on some occasions when
we needed to operate with them. Typing them as they are created and pre-
serving the typing removes the need to cast them explicitly as numbers later.11

The reduction in processing that results from not having to perform explicit
casting must be balanced against the overhead of performing schema valida-
tion (or, perhaps more accurately, type validation).

To explore the performance and scalability of the implementations we conduc-
ted word-level alignment on portions of Chapter 1 of the 1859 and 1860 (first and
second) editions of Charles Darwin’s On the origin of species, which we copied
from Darwin online (http://darwin-online.org.uk/). We chose these editions to sim-
plify the simulation of natural testing circumstances across different quantities of

10See Space–time tradeoff.
11For example, we use keys to retrieve cells by row and column number, the values of which we com-
pute, and the type of the value used to retrieve an item with a key must match the type of the value
used to index it originally (Kay 2008 813). Typing the row and column number as integers when they
are created removes the need to cast them as numerical types for query and retrieval.

Sequence alignment in XSLT 3.0

58

http://darwin-online.org.uk/

text. Specifically, these chapters have the same number of paragraphs, and the
paragraphs observe the same order with respect to their overall content, although
there are small differences in wording within the paragraphs. (This is not the case
consistently with later editions, which deviate more substantially from one
another.) This means that we can scale the quantity of text while always working
with a natural comparison by specifying the number of paragraphs (rather than
the number of words) to align. We ran the Saxon EE (v. 9.9.1.5J) and HE (v.
9.9.1.4J) transformations from the command line with the following commands,
respectively:
• java -Xms24G -Xmx24G -jar /path/saxon9ee.jar -sa -it -o:/dev/null

-repeat:10 nw_ee.xsl
• java -Xms24G -Xmx24G -jar /path/saxon9he.jar -it -o:/dev/null -

repeat:10 nw_he.xsl
These instructions make 24G of RAM available to Java and cause Saxon to per-
form the specified transformation 10 times and report the average execution time
of the last 6 runs. The testing platform was a mid-2018 MacBook Pro with a 2.9
GHz Intel Core i9 processor (6 physical and 12 logical cores) and 32 GB 2400 MHz
DDR4 RAM. Times are in milliseconds. The “N/A” values in the table below
reflect processing that crashed with Java memory errors; see below for discussion.
The table below shows the EE and HE processing time (total and ms per token); it
reports on the time EE requires to output not just the alignment table, but also the
full alignment grid; and it compares the EE and HE times directly.

Table 4. Comparison of EE and HE performance

Tokens EE HE

Paras 1859
tokens

1860
tokens

total
tokens

time ms per
token

time
with
grid

ms per
token
with
grid

grid cost time ms per
token

EE vs HE

1 193 194 387 567 1.5 880 2.3 155% 669 1.7 84.8%

2 232 233 465 751 1.6 1221 2.6 163% 641 1.4 117.1%

3 679 683 1362 4740 3.5 11898 8.7 251% 5498 4.0 86.2%

4 772 777 1549 6464 4.2 14903 9.6 231% 6627 4.3 97.5%

5 810 815 1625 7082 4.4 15031 9.2 212% 7389 4.5 95.8%

6 942 947 1889 9573 5.1 20599 10.9 215% 9963 5.3 96.1%

7 1187 1193 2380 15437 6.5 N/A N/A N/A 17501 7.4 88.2%

8 1363 1369 2732 22007 8.1 N/A N/A N/A 26263 9.6 83.8%

9 1583 1589 3172 29636 9.3 N/A N/A N/A 36266 11.4 81.7%

10 1676 1682 3358 32570 9.7 N/A N/A N/A 41517 12.4 78.5%

11 1908 1912 3820 44568 11.7 N/A N/A N/A 54075 14.2 82.4%

12 2233 2239 4472 63820 14.3 N/A N/A N/A 67932 15.2 93.9%

13 2659 2663 5322 96120 18.1 N/A N/A N/A 98069 18.4 98.0%

Sequence alignment in XSLT 3.0

59

Tokens EE HE

Paras 1859
tokens

1860
tokens

total
tokens

time ms per
token

time
with
grid

ms per
token
with
grid

grid cost time ms per
token

EE vs HE

14 2966 2974 5940 120520 20.3 N/A N/A N/A 124798 21.0 96.6%

15 3147 3126 6273 134375 21.4 N/A N/A N/A 138405 22.1 97.1%

The chart below compares EE and HE performance.

Figure 3. Performance with Saxon EE and HE

Except with a very small number of tokens, EE runs the same operation as HE
more quickly, but the effect of the relative difference in execution time diminishes
as the volume of input grows. We had anticipated that there would be at least a
small improvement in performance because EE let us parallelize <xsl:for-each>
operations, but when we tested the parallelization with thread counts ranging
from 1 to 10, the results were small, inconsistent, and contradictory, which led us
to suspect that the better performance by EE was because it incorporates more
sophisticated optimization in general, and not specifically because of our use of

Sequence alignment in XSLT 3.0

60

@saxon:threads. In the chart below, the difference (across 1 to 10 threads)
between best and worst performance is never greater than 11%, and it is neither
uniformly monotonic nor consistent across different text quantities. The number
to the left is the number of paragraphs, the percentage to the right is the differ-
ence between the best and worst performance, and the sparkline, from left to
right, records the direction and relative degree of change in the timing with 1 to
10 threads:12

Figure 4. Effect of threading <xsl:for-each> on total execution time

If we recall that parallelization of the <xsl:for-each> instances in this project
satisfies the “small amount of output” condition for optimal use of the
@saxon:threads attribute, but not the “large amount of computation” one, it may
be that this particular computation might be considered embarrassingly unparal-
lel.13

The fact that the storage requirement scales linearly (as long as we do not
attempt to maintain the entire grid) means that it is possible to align long sequen-
ces without overflowing the available memory, but the quadratic execution time
means that the alignment of long sequences is nonetheless not well suited for
real-time interactive processing.14 If we do attempt to maintain the entire grid,
which grows quadratically, the poor scaling, which is primarily an inconvenience
with respect to processing time, quickly turns fatal with respect to storage. When
asked to compose and maintain the entire grid (instead of just three anti-diago-
nals needed to compute the alignment), Saxon EE eventually crashed with a Java

12Tests were performed with the same settings as above: we processed each combination of threads (1
to 10) and paragraphs (1 to 15) 10 times, and Saxon EE reported the average of the last 6 iterations.
13See Embarrassingly parallel.
14As a test of larger capacity, we aligned the entire first chapter of the 1859 and 1860 editions of On the
origin of species. The 49 paragraphs of the 1859 and 1860 editions contain 11590 and 11632 word tokens,
respectively. The total number of word tokens in the two editions is 23222, and there are 134814880
(1.3481488e8) cells in the complete grid. The alignment, using EE and the default Java memory alloca-
tion, reported real time of 64m43.159s, user time of 538m5.128s, and sys time of 13m25.910s. Real time
is lower than user time plus sys time because of parallel execution.

With respect to storage, processing maintains only a constant three anti-diagonals at a time, and
the length of an anti-diagonal is linear with respect to the sum of the lengths of the sequences being
compared. The lengths of the full paths that are accumulated on the cells grow linearly with respect to
the number of anti-diagonals, which also enjoys a linear relationship with the lengths of the two
sequences being aligned. The number of cells on an anti-diagonal grows, levels off, and then shrinks
linearly with respect to the number of tokens in the two sequences being compared; the first and last
anti-diagonal each contain a single cell.

Sequence alignment in XSLT 3.0

61

memory error, which a larger Java -Xmx parameter could forestall, but not pre-
vent. If the entire grid is an output requirement with a large amount of data, then,
it will have to be output in a way that does not require it to be stored in memory
in its entirety. Fortunately, as this implementation demonstrates, aligning the
sequences does not require simultaneous access to the entire grid.

5. Conclusions
The code underlying this report is available at https://github.com/djbpitt/xstuff/
tree/master/nw, and has not been reproduced here. It is densely commented, and
thus offers tutorial information about the method. Small exploratory stylesheets
that were used to develop individual components of the code have been retained
in a scratch subdirectory. Performance testing code and results are in the perform-
ance and threads subdirectories.

Tennison concludes her second, improved computation of Levenshtein dis-
tance by writing that:

I guess the take-home messages are: (a) try to iterate rather than recurse whenever
you can and (b) don’t blindly adapt algorithms designed for procedural program-
ming languages to XSLT. [Tennison 2007b]

The XSLT 3.0 <xsl:iterate> element provides a robust method to iterate reli-
ably that was not available to Tennison in 2007. Beyond that, as we extend Tenni-
son’s XSLT-idiomatic implementation of a Levenshtein distance algorithm to the
closely related domain of Needleman Wunsch sequence alignment, we avoid the
need to maintain and traverse the entire grid that is part of the standard descrip-
tion of the algorithm, thus reducing the storage requirement from quadratic to
linear.

Works cited
[1] Bellman, Richard E. 1952. “On the theory of dynamic programming.”

Proceedings of the National Academy of Sciences 38(8):716–19. https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC1063639/

[2] Bellman, Richard E. “The theory of dynamic programming.” Technical report
P-550. Santa Monica: Rand Corporation. http://smo.sogang.ac.kr/doc/
bellman.pdf

[3] Boes, Olivier. 2014. “Improving the Needleman-Wunsch algorithm with the
DynaMine predictor.” Master in Bioinformatics thesis, Université libre de
Bruxelles. http://t.ly/rzxZZ

[4] CollateX—software for collating textual sources. https://collatex.net/

Sequence alignment in XSLT 3.0

62

https://github.com/djbpitt/xstuff/tree/master/nw
https://github.com/djbpitt/xstuff/tree/master/nw
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063639/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063639/
http://smo.sogang.ac.kr/doc/bellman.pdf
http://smo.sogang.ac.kr/doc/bellman.pdf
http://t.ly/rzxZZ
https://collatex.net/

[5] Embarrassingly parallel. https://en.wikipedia.org/wiki/
Embarrassingly_parallel.

[6] “Mary Shelley’s Frankenstein. A digital variorum edition.” http://
frankensteinvariorum.library.cmu.edu/viewer/. See also the project GitHub
repo at https://github.com/FrankensteinVariorum/.

[7] “Global alignment. Needleman-Wunsch.” Chapter 9 of Pairwise alignment,
Bioinformatics Lessons at your convenience, Snipacademy. https://
binf.snipcademy.com/lessons/pairwise-alignment/global-needleman-wunsch

[8] “The Gothenburg model.” Section 1 of the documentation for CollateX. https://
collatex.net/doc/#gothenburg-model

[9] Gotoh, Osamu. 1982. “An improved algorithm for matching biological
sequences.” Journal of molecular biology 162(3):705–08. http://
www.genome.ist.i.kyoto-u.ac.jp/~aln_user/archive/JMB82.pdf

[10] Grimson, Eric and John Guttag. “Dynamic programming: overlapping
subproblems, optimal substructure.” Part 13 of Introduction to computer science
and programming, Massachusetts Institute of Technology, MIT Open
Courseware. https://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-00-introduction-to-computer-science-and-programming-
fall-2008/video-lectures/lecture-13/

[11] “Intertextual Dante.” https://digitaldante.columbia.edu/intertexual-dante-
vanpeteghem/

[12] Juxta. https://www.juxtasoftware.org/
[13] Kay, Michael. 2008. XSLT 2.0 and XPath 2.0 programmer’s reference. 4th edition.

Indianapolis: Wiley (Wrox).
[14] Maleki, Saeed, Madanlal Musuvathi, and Todd Mytkowicz. 2014. Parallelizing

dynamic programming through rank convergence. Proceedings of the 19th ACM
SIGPLAN symposium on Principles and practice of parallel programming
(PPoPP ’14), February 15–19, 2014. Pp. 219–32. https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/02/ppopp163-maleki.pdf

[15] Multiple sequence alignment (Wikipedia). Accessed 2019-11-03. https://
en.wikipedia.org/wiki/Multiple_sequence_alignment

[16] Muraoka, Yoichi. 1971. “Parallelism exposure and exploitation in programs.”
PhD dissertation, University of Illinois Urbana-Champaign. https://
catalog.hathitrust.org/Record/100700411

[17] Naveed, Tahir, Imitaz Saeed Siddiqui, and Shaftab Ahmed. 2005. “Parallel
Needleman-Wunsch algorithm for grid.” Proceedings of the PAK-US
International Symposium on High Capacity Optical Networks and Enabling

Sequence alignment in XSLT 3.0

63

https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Embarrassingly_parallel
http://frankensteinvariorum.library.cmu.edu/viewer/
http://frankensteinvariorum.library.cmu.edu/viewer/
https://github.com/FrankensteinVariorum/
https://binf.snipcademy.com/lessons/pairwise-alignment/global-needleman-wunsch
https://binf.snipcademy.com/lessons/pairwise-alignment/global-needleman-wunsch
https://collatex.net/doc/#gothenburg-model
https://collatex.net/doc/#gothenburg-model
http://www.genome.ist.i.kyoto-u.ac.jp/~aln_user/archive/JMB82.pdf
http://www.genome.ist.i.kyoto-u.ac.jp/~aln_user/archive/JMB82.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-13/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-13/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/video-lectures/lecture-13/
https://digitaldante.columbia.edu/intertexual-dante-vanpeteghem/
https://digitaldante.columbia.edu/intertexual-dante-vanpeteghem/
https://www.juxtasoftware.org/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ppopp163-maleki.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ppopp163-maleki.pdf
https://en.wikipedia.org/wiki/Multiple_sequence_alignment
https://en.wikipedia.org/wiki/Multiple_sequence_alignment
https://catalog.hathitrust.org/Record/100700411
https://catalog.hathitrust.org/Record/100700411

Technologies (HONET 2005), Islamabad, Pakistan, Dec 19–21, 2005. https://
upload.wikimedia.org/wikipedia/en/c/c4/ParallelNeedlemanAlgorithm.pdf

[18] Needleman, Saul B. and Christian D. Wunsch. 1970. “A general method
applicable to the search for similarities in the amino acid sequence of two
proteins.” Journal of molecular biology 48 (3): 443–53.
doi:10.1016/0022-2836(70)90057-4.

[19] Saxon documentation of saxon:threads. https://www.saxonica.com/html/
documentation/extensions/attributes/threads.html

[20] Saxon documentation of xsl:iterate. http://www.saxonica.com/documentation/
index.html#!xsl-elements/iterate

[21] Sellers, Peter H. 1974. “On the theory and computation of evolutionary
distances.” SIAM journal on applied mathematics 26(4):787–93.

[22] Smith, Temple F., Michael S. Waterman, and Walter M. Fitch. 1981.
“Comparative biosequence metrics.” Journal of molecular evolution, 18(1):38–46.
https://www.researchgate.net/publication/
15863628_Comparative_biosequence_metrics

[23] Space–time tradeoff. https://en.wikipedia.org/wiki/Space
%E2%80%93time_tradeoff

[24] Tennison, Jeni. 2007. “Levenshtein distance in XSLT 2.0.” Posted to Jeni’s
musings, 2007-05-03. https://www.jenitennison.com/2007/05/06/levenshtein-
distance-on-the-diagonal.html

[25] Tennison, Jeni. 2007. “Levenshtein distance on the diagonal.” Posted to Jeni’s
musings, 2007-05-06. https://www.jenitennison.com/2007/05/06/levenshtein-
distance-on-the-diagonal.html

[26] Trovato, Paolo. Everything you always wanted to know about Lachmann’s method.
A non-standard handbook of genealogical textual criticism in the age of post-
structuralism, cladistics, and copy-text. Padova: libreriauniversitaria.it , 2014

[27] Van Peteghem, Julie. 2015. “Digital readers of allusive texts: Ovidian
intertextuality in the Commedia and the Digital concordance on intertextual
Dante.” Humanist studies & the digital age, 4.1, 39–59. DOI: 10.5399/uo/
hsda.4.1.3584. http://journals.oregondigital.org/index.php/hsda/article/view/
3584

[28] Vintsyuk, T[aras] K[lymovych]. 1968. “Speech discrimination by dynamic
programming.” Cybernetics 4(1):52–57.

[29] Wang, Bin. 2002. “Implementation of a dynamic programming algorithm for
DNA sequence alignment on the cell matrix architecture. MA thesis, Utah

Sequence alignment in XSLT 3.0

64

https://upload.wikimedia.org/wikipedia/en/c/c4/ParallelNeedlemanAlgorithm.pdf
https://upload.wikimedia.org/wikipedia/en/c/c4/ParallelNeedlemanAlgorithm.pdf
https://www.saxonica.com/html/documentation/extensions/attributes/threads.html
https://www.saxonica.com/html/documentation/extensions/attributes/threads.html
http://www.saxonica.com/documentation/index.html#!xsl-elements/iterate
http://www.saxonica.com/documentation/index.html#!xsl-elements/iterate
https://www.researchgate.net/publication/15863628_Comparative_biosequence_metrics
https://www.researchgate.net/publication/15863628_Comparative_biosequence_metrics
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff
https://www.jenitennison.com/2007/05/06/levenshtein-distance-on-the-diagonal.html
https://www.jenitennison.com/2007/05/06/levenshtein-distance-on-the-diagonal.html
https://www.jenitennison.com/2007/05/06/levenshtein-distance-on-the-diagonal.html
https://www.jenitennison.com/2007/05/06/levenshtein-distance-on-the-diagonal.html
http://journals.oregondigital.org/index.php/hsda/article/view/3584
http://journals.oregondigital.org/index.php/hsda/article/view/3584

State University.” https://www.cellmatrix.com/entryway/products/pub/
wang2002.pdf

Sequence alignment in XSLT 3.0

65

https://www.cellmatrix.com/entryway/products/pub/wang2002.pdf
https://www.cellmatrix.com/entryway/products/pub/wang2002.pdf

66

Powerful patterns with XSLT 3.0 hidden
improvements

Patterns have changed significantly in XSLT 3.0, opening subtle
ways to improve your code, that may have been hidden in plain

sight
Abel Braaksma

Exselt
<abel@exselt.net>

Abstract

With XSLT 3.0 slowly becoming more mainstream since its status as a Rec-
ommendation in 2017, it is now a good moment to review one of the smaller
changes to the XSLT language, namely: patterns. Though the changes are
subtle, they add some powerful new ways to the pattern syntax and template
matching.

Patterns are ubiquitous in XSLT, in fact, they are the cornerstone to suc-
cessful programming in this language. This paper is not meant as an intro-
duction to patterns and pattern matching through xsl:apply-templates,
for that other resources exist. Instead, it will focus on some of the changes in
the syntax and the new additions to pattern matching rules.

After reading this paper, you should have a firmer grasp of the new
capabilities of patterns in XSLT 3.0 and of ways to apply them in your own
day-to-day coding practices.

Keywords: XML, XSLT, XPath, patterns, XSLT-30

1. Resources
This paper discusses the capabilities of patterns in XSLT 3.0 which has reached
W3C Recommendation status in 20171. The latest version can be found at [18],
which is the Recommendation. When this paper refers to XPath functions, opera-
tors or syntax, it is either the XPath 3.0 Recommendation [12], together with the
Functions and Operators Recommendation [14], or the XPath 3.1 Recommenda-
tion [13], together with the Functions and Operators Recommendation [15].

An XSLT 3.0 processor can support either XPath 3.0 and F&O 3.02 or XPath 3.1
and F&O 3.1 The 3.1 editions of these specifications define the map and array
types, and the functions and operators that can operate on them, plus a number

1See announcement: https://www.w3.org/blog/news/archives/6377.

67

https://www.w3.org/blog/news/archives/6377

of smaller changes that are irrelevant for the discussion of patterns. The XSLT 3.0
specification itself defines the map types and its functions as well, leaving the
main difference between XPath 3.0 and 3.1 to be the array type3.

The W3C Recommendation status means that these documents can be consid-
ered final, and will not be changed in the future.

2. A quick tour on patterns
As a quick recap on what patterns are and how they are applied in XSLT, this sec-
tion will provide the basics of the understanding the interaction between
xsl:apply-templates and xsl:template match="…". A good summary is given
by Jeni Tennison in her book XSLT and XPath On The Edge [8]:

Any XSLT stylesheet is comprised of a number of templates that define a particu-
lar part of the process. Templates [are top-level constructs] defined with
xsl:template elements, each of which holds a sequence of XSLT instructions
that are carried out when the template is used.

The two ways of using template by calling them and by applying them. If an
xsl:template telement has a name attribute, it defines a named template, and
you can use it by calling it with xsl:call-template. If an xsl:template ele-
ment has a match attribute, it defines a matching template, and you can apply it
by applying templates to a node [or any other sequence]4 that it matches using
xsl:apply-templates5.

A stylesheet can be called in a variety of ways, typically by either implicitly
starting to apply templates, or by explicitly calling a named template. Common
practice has it that if you want a clear starting point when starting a stylesheet in
apply-templates mode, that you define the match pattern as match="/", which
will match the document node at the root of a typical tree6.

By default, a processor that is invoked with apply-templates mode, will proc-
ess the initial match selection. In XSLT 2.0 there was only one way to invoke a pro-
cessor with apply-templates mode, and that was by using a processor-dependent
way of setting the initial context node, which could only ever be a single node. Typ-
ically, this was referred to as source or input document.

2The acronym F&O is short for XPath and XQuery Functions and Operators. When people refer to XPath
they typically mean both the XPath language and the F&O. The former contains the syntax of the
XPath language and its basic operations, the latter contains the definitions of all functions and opera-
tors that are available from XPath (and XQuery). Both specifications rely heavily on one another.
3For a full list of changes, see section I in [13] and section F in [15].
4Since XSLT 3.0, you can apply templates to any item, not just nodes.
5It is possible for a template to have both a match and a name attribute, in which case it can be both
called and applied.
6It is no requirement that an XML tree has a document node at its root, but it is the most common
scenario. We will see later how to deal with trees that are not rooted at a document node.

Powerful patterns with XSLT 3.0 hidden improvements

68

2.1. New invocation methods since XSLT 3.0

The following methods of invoking a stylesheet have been introduced in XSLT
3.0. Different processors will have different ways of how to configure these invo-
cation scenarios, but each XSLT 3.0 supports them. Consult your processor's doc-
umentation for how you can utilize these ways:

• Apply-templates invocation, arguably the most common method of invoking
a stylesheet. This method has the following options:

• The initial match selection. This can be the source document in the form of a
document node, a sequence of documents like the result of the
fn:collection function, a single item like a number, a string or a date, a
map, an array of a function item, or a sequence of multiple items, possibly
of different types.

• Optionally, the global context item. This item is used as the context in top-
level declarations such as variables and parameters. Typically this will be
set to the first item from the initial match selection, but this is no require-
ment and it is allowed to be absent.

• Optionally, the initial mode. Each template can belong to a mode and you
can apply templates with the apply-templates instruction to only those
templates that belong to a mode by using the mode attribute. The default
mode is the unnamed mode, or whatever mode is defined in the default-
mode attribute of the xsl:package element. Modes can be defined explic-
itly with xsl:mode or implicitly with the mode attribute. Specifying an
initial mode will start the transformation scenario in that mode.

• Optionally, a list of parameters. Available parameters are defined with the
xsl:param declarations inside the xsl:template declarations. Parameters
can be optional or required.

• Call-template invocation. This method has remained largely the same since
XSLT 2.0, but a few additions have been made:

• Invoking a call-template transformation scenario without a name will now
default to a pre-defined name which is the same for all processors:
xsl:initial-template. If a template is defined with that name, it will be
the default entry point for this method of invocation.

• Optionally, a context item to be used with the called template. Since XSLT
3.0 it is possible to define named templates with a required, absent or
optional context item through the xsl:context declaration. If such decla-
ration is absent and a specific context item is not given, it default to the
global context item, which in turn can be controlled by the top-level
xsl:global-context-item declaration.

Powerful patterns with XSLT 3.0 hidden improvements

69

• Function-call invocation. This method is entirely new in XSLT 3.0 and allows
you to execute an individual stylesheet function. This function has to be avail-
able and must have visibility public or final. Options are:
• Name and arity of the stylesheet function. Stylesheet functions are defined

with xsl:function and can be overloaded, that is, the same function can
exist with a different number of parameters. Processors will allow you to
specify precisly what function with what arity to call.

• A list of items to act as parameters. Other than for templates, parameters
for functions are positional and can be defined without giving their name.
The number of items must be the same as the arity of the function.

• For all transformation scenarios:
Optionally, controlling how the result of the invocation should be

returned: as a raw result, as a tree by using the build-tree attribute on
xsl:output, or serialized. The latter was the default in XSLT 2.0. Typical seriali-
zations include XML and HTML. New in XSLT 3.0 are HTML5, XHTML5,
JSON and Adaptive7.
For the remainder of this paper, we will assume apply-templates invocation, as

that is the main method for starting a transformation and for applying templates
against the matching patterns we will discuss in the up-coming chapters.

2.2. The role of patterns in an XSLT stylesheet

A pattern can be seen as a boolean expression: either an item or node matches the
pattern, or it doesn't. If it matches, the node will be selected, which in the case of a
template means the template will be executed with that node as the context item.

As mentioned above, a stylesheet typically contains a bunch of top-level ele-
ments that are templates. From an imperative view, they can be considered a
large switch statement, optionally tagged or grouped by their mode, where the
switch is initiated each time the processor encounters an xsl:apply-templates
instruction. The select attribute of that instruction can be used to limit or
broaden the actual nodes the templates can act on. If that attribute is absent, the
children of the context node are selected8.

Templates are typically applied recursively. That is, inside another template,
applying templates again through xsl:template will apply all templates again.

7The serialization methods JSON and Adaptive are only available when XPath 3.1 is supported by the
processor. All processors support HTML 5.
8The exact expression for the default select attribute is child::node(). This has the effect that all
nodes that are children, but not deeper descendants, are selected. This excludes attributes and name-
space nodes, which technically are not children, and won't select a document node, which cannot
appear as child or a parent node. From the seven node kinds, this leaves element, comment, text and
processing instruction nodes to be selected by default.

Powerful patterns with XSLT 3.0 hidden improvements

70

As long as children (the default) or descendants are selected, this will not end in
an endless loop, however, it is possible to select the current context node, or a
parent thereof, again. If re-processing the same node is necessary for your sce-
nario, it is best to do that by specifying a different mode.

An alternative to re-process the currently selected node is by using xsl:next-
match, which will select the next match in priority order (details below), or
xsl:apply-imports, which will select the next match in imported order.

A simple example stylesheet (the root element xsl:stylesheet,
xsl:transform or xsl:package is omitted in this and other examples for clarity)
with the imperative explanation is as follows:

<xsl:template match="/">
 <result>
 <xsl:apply-templates />
 </result>
</xsl:template>

<xsl:template match="book">
 <xsl:apply-templates select="*" />
</xsl:template>

<xsl:template match="author/name">
 <author><xsl:value-of select="." /></author>
</xsl:template>

<xsl:template match="text() | comment()" />
If the example above is the whole stylesheet, and it is invoked with a docu-

ment containing book, author and name elements, possibly among others, then an
imperative way of reading it is as follows:

• If the current node is the root node, then output <result> and inside it, proc-
ess the children of the document node.

• If the current node is a book element, then output nothing, but select all ele-
ments that are children of that element.

• If the current node is a name element with a parent author, then output an
<author> element and the value of the current node (the name of the author).
Do not further apply templates.

• If the current node is a text or comment node, then output nothing, and do not
further apply templates.

• If the current node is anything else, apply the default templates. This will in
turn apply templates to the chilren and the children of children in depth-first
traversal of the tree9.

Powerful patterns with XSLT 3.0 hidden improvements

71

2.3. Priority of templates

It is possible, and in fact quite likely, that multiple templates can match the same
node. This is called a conflict and you have several ways of dealing with such con-
flicts. By default, the template with the highest priority is chosen. If there are mul-
tiple templates with the same priority that match, then it depends on the setting
of the attribute on-multiple-match of the corresponding xsl:mode declaration10.
The priority resolution goes as follows:

• First, the import precedence is considered, and only those templates with the
highest import precedence. This effectively means that if you used
xsl:import, and you have a matching template for the current node in the
imported and the main stylesheet, that the matching template rule11 in the
main stylesheet will be considered, and not the one in the imported stylesheet.
Using xsl:apply-imports will instruct the processor to apply the imported
matching templates, or the default template rules if none is found.

• Secondly, the priority is considered. The processor assigns a default priority
between -1 and +1 inclusive, but programmers can assign their own priority.
The match having the highest priority will be chosen. The instruction
xsl:next-match can be used to instruct the processor to consider matching
templates of a lower priority in the same import precedence12, then the next
matching template in declaration order13, or the default template rules if none
is found.

• Thirdly, the declaration order is considered. By default, the last matching tem-
plate will be taken. Such a conflict is often a sign of a programming error, and
such error can be raised by setting on-multiple-match="fail"14 on the corre-
sponding xsl:mode declaration. It is good practice to indeed set this value to
"fail", which will allow better analysis of such errors. Again, as with the pre-
vious bullet point, xsl:next-match can be used to select the next in declara-
tion order15. If you don't want an error, but wish to be informed of such

9The default templates are briefly discussed below in the section on default templates.
10For details, see section 6.4 and section 6.6.1 of [18].
11The specification talks of template rules, whereas in this paper I will typically use the term matching
template or template match. The terms are interchangeable and refer to an xsl:template declaration
with a given match attribute, its optional parameters and its contents, called the sequence constructor.
12If a matching template with a lower import precedence exists, xsl:next-match will process that
instead. There is no mechanism to solely invoke the next matching template in the current import
level alone. To overcome this limitation, modes can be used.
13later in the stylesheet means higher in the matching order, in other words, xsl:next-match looks up
the tree, not down.
14The only other valid value is use-last, which is the default and does not need to be set explicitly.
15If you use both on-multiple-match="fail" and xsl:next-match, then for cases where there are
two matching templates on the same import precedence level, an error will be raised. Therefore,

Powerful patterns with XSLT 3.0 hidden improvements

72

matching conflicts, you can opt to set warn-on-multiple-match="true" on
the corresponding xsl:mode declaration.

XSLT 3.0 has a big new feature: packages with xsl:package, xsl:use-
package, xsl:expose and others [4]. Using packages allows you to override com-
ponents in a more consistent manner than through import precedence by using
xsl:override16. This applies to functions, variables, named templates and
named attribute sets, as well as for template rules. Only named modes can be
overridden, which in practice means, they can be expanded upon by writing
xsl:template declaration under the xsl:override declaration using the given
mode name.

If conflicts occur in matching templates in package hierarchies, any overriden
template rule takes precedence over any used template rule (through a used
package with the xsl:use-package instruction). Within this set of overriding
templates, the second and third conflict resolution points above apply. If still no
overridden rule matches, the matching templates in the used package (within the
same mode) are considered. Here, all three conflict resolution rules apply17. Like
with the previous precedence rules, it is possible to use xsl:next-match to
invoke the used template rules from the used package, if any. However, it not
possible to use xsl:apply-imports within an overriding matching template, it
will raise error XTSE346018.

2.3.1. Default priority

In a matching template declaration you can give an explicit priority:
<xsl:template match="*" priority="5" />. If the priority attribute is absent,
the processor will assign a default priority. Roughly said, this default priority
assigns a higher priority to more specific patterns, but this is not always the case.
For instance, a match pattern with one predicate and one with 10 predicates both
receive the same priority, even though the latter is much more specific. A sum-
mary of the rules is as follows, from low to high19:

xsl:next-match will never select another matching template declaration at the same level and with
the same lowest priority and will instead have the effect of calling the default templates.
16Packages are a large subject on their own and may be the subject of a future talk. Several websites
and the slides in reference [4] provide good starting points.
17The reason that xsl:import does not apply to overriding templates is that xsl:override is part of
an implicit or explicit package, and xsl:import cannot be used with either, it can only be used with
importing a stylesheet module, which cannot contain overridable components. See for discussion the
following W3C bug report: https://www.w3.org/Bugs/Public/show_bug.cgi?id=24310.
18According to bug report #29210, comment #3, this error should have been dropped and the list of
imported template rules be empty by definition, without causing an error. The report also mentions
that the error cannot always be raised statically. See: https://www.w3.org/Bugs/Public/show_bug.cgi?
id=29210.
19The precise rules can be found in section 6.5 of the specification [18].

Powerful patterns with XSLT 3.0 hidden improvements

73

https://www.w3.org/Bugs/Public/show_bug.cgi?id=24310
https://www.w3.org/Bugs/Public/show_bug.cgi?id=29210
https://www.w3.org/Bugs/Public/show_bug.cgi?id=29210

• -1.0, if the pattern is a predicate pattern of the form "." (which matches any
item or node).

• -0.5, if the pattern is any of the following:
• exactly "/" or "*";
• exactly node();
• any of element(), attribute();
• any of element(*), attribute(*)20;
• exactly "document-node()";
• any of text(), processing-instruction(), comment(), namespace-

node();
• a document-node test with an element test like above, for instance

document-node(element(*));
• any of the above, preceded by an axis, for instance child::element(),

namespace::*.
• -0.25, if the pattern is a single path expression like any of the following:

• ns:* (if only the namespace is specified);
• *:foo (if only the local-name is specified);
• Q{http://somenamespace}* (if only the namespace is specified)21;
• any of the above, preceded by an axis, like child::ns:*.

• 0.0, if the pattern takes any of the following forms:
• a single path expression, like book;
• an element or attribute test like element(foo), attribute(bar);
• an element or attribute test with only the type specified, like element(*,

xs:string);
• a node-test for a specific processing instruction, like processing-

instruction('bar');
• a document-node test with an element test like the above, for instance

document-node(element(book));
• any of the above, preceded by an axis, for instance child::author,

descedant::para, self::processing-instruction('bar'),
attribute::foo22.

• +0.25, if the pattern takes any of the following forms:

20The specification [18] does not mention @*, though it is likely that this was omitted by accident. In
the XSLT 2.0 specification [16], section 6.4, it is correctly specified and given a priority of -0.5, which is
what all tested processors do in XSLT 3.0 as well.
21This rule is not in the specification, but in the errata [17].

Powerful patterns with XSLT 3.0 hidden improvements

74

• an element or attribute test with both name and type specified, like
element(author, xs:string) or attribute(id, xs:ID);

• a schema-element test like schema-element(X);
• a schema-attribute test like schema-attribute(X);
• a document-node test with an element test with both name and type speci-
fied, like document-node(element(author, xs:string));

• a document-node test with a schema-element test, like document-
node(schema-element(X));

• any of the above, preceded by an axis, for instance
descendant::element(author, xs:string).

• +0.5, if the pattern does not fit in any of the above categories, and is not a pred-
icate pattern. This is true, for instance, as soon as a pattern has more than one
path element, as in book/author, or has one or more predicates, as in book[3]
or book[author="Tolkien"][title].

• +1.0, if the pattern is a predicate pattern of the form ".[…][…], that is, has one or
more predicates.
It should be noted that it is possible to write patterns that match a more

generic set of nodes, that have nonetheless a higher precence. For instance, if you
were to write node()[self::element()], it has priority +0.5, and matches any
element, but the more selective pattern book will only match elements that have
the name "book", but this has now a lower priority of 0.0.

As mentioned before, to prevent confusion and unless priorities are really
trivial or irrelevant (for instance, if your pattern matches one and only one node
from your input document), then it is best to specify priorities explicitly, or switch
to a different mode to prevent multiple matches or match conflicts that are other-
wise hard to diagnose.

2.3.2. Priorities as inheritance

Another way of looking at the priority conflict resolution mechanism is as a way
virtual methods work in object-oriented languages. In OO, the most specific vir-
tual method usually wins when there are multiple overriding definition in the
OO hierarchy. This is the same with XSLT's matching templates: the most specific,
i.e. closest to the definition in the principal stylesheet, usually wins.

Writing stylesheets to match templates that depend highly on those relatively
complex rules of template rule inheritance (not a real term), is often considered
poor form and in courses and books the typical advice is to either use explicit pri-

22The specification [18] does not mention @foo as abbreviated forward step, though it is likely that this
was omitted by accident. In the XSLT 2.0 specification [16], section 6.4, it is correctly specified and
given a priority of 0.0, which is what all tested processors do in XSLT 3.0 as well..

Powerful patterns with XSLT 3.0 hidden improvements

75

orities using the priority attribute, or by using modes. In XSLT 3.0 you can now
require modes to be declared by setting declared-modes="true" in the
xsl:package element, which makes them more resilient for typos, and a proper
structure with modes is often the most readable one in complex scenarios.

Using XSLT packages with xsl:mode and setting its visibility attribute to
private, final or public, when used through an xsl:use-package declaration
they can be overriden in xsl:override if public, used if they are final and hid-
den and never used if they are private. This provides a better protection to the
template rule inheritance chain than is available with xsl:import, which is flimsy at
best.

2.3.3. Mode declarations

What happens if you apply templates to a set of nodes or other items and there is
no matching template? In XSLT 1.0 and 2.0, this would mean that the default tem-
plate is called and generally speaking, this would output the value of the element
nodes only. In other words: if your output contains only the text nodes from the
input tree, you know that your templates are not being matched correctly.

This behavior has been one of the most controversial, and also one of the most
asked about on sites like StackOverflow and the XSL Mailing List. XSLT 3.0
attempts to alleviate the pain a little bit by allowing you to have more control
over the behavior of the processor when it comes to non-matching templates
through declared modes using the xsl:mode declaration.

The full syntax allowed by xsl:mode is as follows:
<xsl:mode
 name? = eqname
 streamable? = boolean
 use-accumulators? = tokens
 on-no-match? = "deep-copy" | "shallow-copy" | "deep-skip" | "shallow-
skip" | "text-only-copy" | "fail"
 on-multiple-match? = "use-last" | "fail"
 warning-on-no-match? = boolean
 warning-on-multiple-match? = boolean
 typed? = boolean | "strict" | "lax" | "unspecified"
 visibility? = "public" | "private" | "final" />
Some of those options have already been discussed or are clear from the their

name, nevertheless, let's briefly go over each of them before diving into the
default templates.
• name, if present is the name of the mode, if not present, defines the behavior of

the default mode.
• streamable, if present and set to true, declares that all patterns and templates

in this mode must meet the streamability requirements.

Powerful patterns with XSLT 3.0 hidden improvements

76

• use-accumulators, only applicable if streamable="true", and defines which
accumulators need to be calculated while the mode is active, and these accu-
mulators must themselves be streamable. This distinction allows mixing non-
streamable accumulators and streamable accumulators in a mixed-mode
transformation where both streamable and non-streamable modes are used.

• on-no-match will be explained in the next section. The default is text-only-
copy.

• on-multiple-match was discussed above, and defines whether an error
should be raised when equal-priority and equal-import-precedence matches
are encountered. The default is use-last.

• warning-on-no-match defines whether a non-match in this mode will lead to
a warning. This can be helpful in analyzing pattern issues. Though the warn-
ing is processor-defined, it will likely give position and description of the
node that is not matched explicitly. Setting this to true will not prevent the
default templates to be used, but will issue a warning in such cases. The
default value is implementation-defined, but most processors have this set to
false.

• warning-on-multiple-match, if present and set to true, will issue a warning
when multiple template rules are matched that have the same priority and
import-precedence. It is therefore similar to on-multiple-match, but will not
halt the processor. The default is implementation defined, but most processors
appear to have this set to false.

• typed determines whether the document or node(s) processed by this mode
should be typed or not. This is mainly relevant for schema-aware processors. It
has the following allowed values:

• unspecified (the default), whether or not the nodes processed by this
mode are typed is irrelevant.

• true, means all nodes must be typed. Using xsl:apply-templates with
this mode and the selection contains one or more nodes that are untyped
(i.e., have xs:untyped or xs:untypedAtomic) will lead to an error.

• false, means none of the nodes must be typed. If any node has a different
type than xs:untyped or xs:untypedAtomic, an error will occur.

• strict is almost analogous to true, except that for each pattern that
matches elements by its EQName, the element-name in the first step in
such expressions must be available in the in-scope schemas, and it is inter-
preted as if it was written as schema-element(E), where E is the name of
the element. For non-elements and wild-card matches, this rule does not
apply.

Powerful patterns with XSLT 3.0 hidden improvements

77

• lax is the same as strict, except that no error is raised if the element dec-
laration is not available in the in-scope schemas.

• visibility applies to packages. If it is public, it is possible for a using package
to add matching templates to this mode. If it is final, the mode is available
and can be used in xsl:apply-templates, but cannot be expanded. If it is
private, it is not available in using package, but only in the containing package.
The unnamed mode is always private and it is not possible to give it a differ-
ent visibility.

As described before, using an xsl:package element as the top element of your
stylesheet forces you to use xsl:mode for each mode that you want to use. If it is
xsl:stylesheet or xsl:transform, you can still create modes the old way23, just
by using a new name in the mode attribute of xsl:template. This mode will then
have all the default settings only. You can change this behavior by setting the
declared-modes attribute on xsl:package. This attribute is not available on
xsl:stylesheet or xsl:transform, though there's nothing stopping you from
declaring modes regardless.

For more control over your modes and less chance of typing errors leading to
modes magically coming into existence, it is commonly considered best-practice
to always declare modes to enforce that by using xsl:package. Using that as top-
level element does not change the behavior of the stylesheet. In fact, if you use
xsl:stylesheet or xsl:transform instead, these are internally transformed into
an xsl:package anyway, with all other things remaining equal.

2.3.4. The six build-in templates

There are in total six default, or build-in templates that are called when there's no
matching template. Which one is effectively called depends on whether there are
nodes or items that are not matched by any of the matching templates, and which
one is requested by the xsl:mode declaration.

If build-in templates skip over, or shallow-copy nodes and process nested
children, they will always stay in the current mode when the implicit xsl:apply-
templates is called. Likewise, any parameters remain untouched (that is, they are
passed on).

It is not possible to call a build-in template rule directly. However, a simple
trick is to declare a mode through xsl:mode with a unique name and no matching
templates in that mode. Applying templates to such an empty mode, will call the
build-in template as defined on the on-no-match attribute of that xsl:mode decla-
ration.

23The "old way" for mode declarations are officially called implicit mode declarations, if there's an
explicit matching xsl:mode declaration for a mode, this is called an explicit mode declaration.

Powerful patterns with XSLT 3.0 hidden improvements

78

• text-only-copy, this is the same behavior as in XSLT 1.0 and XSLT 2.0. The
rules are a little different because of the possibility to match any item:
• Document nodes and elements are not copied, but their contents are

applied as if there's one <xsl:apply-templates /> statement.
• Text nodes and attribute nodes, their string value is copied.
• Comments, namespace nodes and processing instructions are skipped.
• Atomic types, their string value is copied.
• Functions and maps are skipped.
• Arrays, all items in the array are aplied as if there's one <xsl:apply-

templates select="*?" /> statement24.
The equivalent templates for above behavior could look as follows25:

<!–- skip document nodes and elements, but process children -->
<xsl:template match="document-node()|element()" mode="M">
 <xsl:apply-templates mode="#current"/>
</xsl:template>

<!–- output text and attribute nodes value -->
<xsl:template match="text()|@*" mode="M">
 <xsl:value-of select="string(.)"/>
</xsl:template>

<!–- output any atomic type's value -->
<xsl:template match=".[. instance of xs:anyAtomicType]" mode="M">
 <xsl:value-of select="string(.)"/>
</xsl:template>

<!–- skip any other node -->
<xsl:template
 match="processing-instruction()|comment()|namespace-node()"
 mode="M"/>

<!–- skip functions and maps -->
<xsl:template
 match=".[. instance of function(*)]"
 mode="M"/>

<!–- process items of an array -->
<xsl:template match=".[. instance of array(*)]" mode="M">

24Arrays are only supported by processors that support the XPath 3.1 feature. If only XPath 3.0 is sup-
ported, arrays are not an available type, nor is the related syntax.
25Those examples come from section 6.7.1 of the XSLT 3.0 specification [18] and illustrate the behavior,
but don't include the maintaining of the parameters, which cannot be expressed this way.

Powerful patterns with XSLT 3.0 hidden improvements

79

 <xsl:apply-templates mode="#current" select="?*"/>
</xsl:template>
The big two surprises in this behavior are that any item, like a string, num-

ber or QName will be output, and that the content of arrays are further pro-
cessed.

• deep-copy, essentially means: if a node is matched, the whole node is copied,
as if copied by the xsl:copy-of instruction. This includes all it descendants,
and no further processing takes place. This is not the same as an identity tem-
plate, as for that the descendants should be processed. The code could look as
follows:

<!–- copy any item, do not process children further -->
<xsl:template match="." mode="M">
 <xsl:copy-of select="." validation="preserve"/>
</xsl:template>
This behavior means that functions, maps and arrays are copied to the out-

put as-is, but they are not atomizable. If your input contains such items, it will
lead to an error upon serialization. It is allowed to have non-atomizable items
in your output, but then you should not serialize it, instead, you should proc-
ess the raw result, or catch the result in a variable and re-apply it for further
processing.

• shallow-copy, essentiall means: if a node is matched, that node is shallow-
copied as if copied by the xsl:copy instruction. The descendants are then fur-
ther processed. This is closely similar to the popular identity template
programming model. The code could look as follows:

<!–- process contents of nodes, copy any other item -->
<xsl:template match="." mode="M">
 <xsl:copy validation="preserve">
 <xsl:apply-templates select="@*" mode="M"/>
 <xsl:apply-templates select="node()" mode="M"/>
 </xsl:copy>
</xsl:template>
The same notes for maps, arrays and functions, as mentioned with deep-

copy, apply here.
The two xsl:apply-templates lines have the effect that the size and posi-

tion of the nodes during further processing can be different from the more tra-
ditional <xsl:apply-templates select="@* | node()" />. With the build-
in template there are two sets, both starting at position 1, one with all
attributes, the other with all other nodes.

Namespace nodes are not selected and applied from inside the xsl:copy,
but they are copied to the output as a result of how xsl:copy works. The only

Powerful patterns with XSLT 3.0 hidden improvements

80

way to process namespace nodes is to select them specifically inside the
xsl:apply-templates call in user code.

• deep-skip is the opposite of deep-copy: any node, except document nodes,
are skipped and their descendants are not processed further. This can be use-
ful if you are only interested in a small subset of nodes from the input tree.
Using this as the default template setting means that every node must be care-
fully matched, or the output will not contain it. The equivalent template rules
for deep-skip are:

<!–- process contents of document nodes -->
<xsl:template match="document-node()" mode="M">
 <xsl:apply-templates mode="#current"/>
</xsl:template>

<!–- stop processing anything else -->
<xsl:template match="." mode="M"/>

• shallow-skip is the opposite of shallow-copy: any node is skipped, but the
descendants of the node are processed further. Any other item is skipped
without further processing, except for arrays, in which case each element in
the array is processed further.

<!–- process contents of document and element nodes -->
<xsl:template match="document-node()|element()" mode="M">
 <xsl:apply-templates select="@*" mode="#current"/>
 <xsl:apply-templates mode="#current"/>
</xsl:template>

<!–- process each item in the array -->
<xsl:template match=".[. instance of array(*)]" mode="M">
 <xsl:apply-templates mode="#current" select="?*"/>
</xsl:template>

<!–- skip the rest -->
<xsl:template match="." mode="M"/>

• fail simply raises an error when no match is found in the user supplied
matching templates. This is equivalent to warning-on-no-match="yes",
except that instead of a warning, an error is raised and further processing
stops. It is equivalent to the following matching template:

<!–- throw error on any item not matched -->
<xsl:template match="." mode="M">
 <xsl:message terminate="yes" error-code="err:XTDE0555"/>
</xsl:template>

Powerful patterns with XSLT 3.0 hidden improvements

81

3. What's new in XSLT 3.0 patterns
At first glance it might seem that patterns in XSLT 3.0 didn't get that much of an
overhaul, especially compared with large new features of the language like pack-
ages, maps, higher order functions, accumulators and streaming. However, the
syntax has been brought more in line with XPath syntax, parenthesized expres-
sions are now possible, tfunctions have been added for rooted patterns, as well as
except and intersect expressions at the top level of a pattern. Furthermore,
much requested axes have been added. Where in XSLT 2.0 only the child and
attribute axes were available26, this has now been expanded to include all for-
ward axes: self, namespace, descendant and descendant-or-self.

3.1. Main new features

The following is a list of the new features of the pattern language, along with sev-
eral additions in other areas of XSLT that influence how matching patterns
behave:
• Predicate patterns. These are patterns of the form .[predicate], where predi-

cate is any XPath predicate expression. Such patterns can be used to match
any node, atomic type, map, array or function. This is arguably one of the big-
gest changes to the pattern syntax, as previously patterns were only allowed
to operate on nodes.

There's one small, yet important difference between matching with predi-
cate patterns and normal patterns: the former are matched with singleton focus,
which means that size and position are always one. While normal node pat-
terns can match on position. Therefor, match=".[2]" will never select any-
thing, not even a second child node, while conversely, match="*[2]" will
match each second child element, or match="node()[2]" will match each sec-
ond node.

• Applying templates to any kind of item. Previously, using xsl:apply-templates
only applied to nodes, and trying otherwise resulted in an error. In line with
the mentioned predicate patterns, it is now possible to select any kind of item.
For instance, <xsl:apply-templates select="('one', 'two',
'three')" /> will apply templates on the three strings in the sequence. Nor-
mal node patters won't match these, but a predicate pattern would. For
instance:

<xsl:template match=".[. = 'one']">
 <xsl:text>Caught the first!</xsl:text>
</xsl:template>

26One might argue that an XSLT pattern always could have a pattern like "foo//bar", but technically,
this expands to a child axis on the last step.

Powerful patterns with XSLT 3.0 hidden improvements

82

<xsl:template match=".[. instance of xs:string]">
 <string value="." />
</xsl:template>
One sublety remains: if you use xsl:apply-templates without a select

attribute, the default of it selecting the children of the context node remains. If
the context item is not a node, this will raise an exception.

• New axes: self, namespace, descendant and descendant-or-self. These axes
were not previously directly available, though a close proximity with the
descendant axis could be achieved with the double-slash path operator //.
Now, these axes are directly available in any pattern expression. Using these
patterns influences counting position and size, which is explained in the next
section.

• except and intersect patterns. In XSLT 2.0 it was comparatively hard to
match over a set of nodes except an other set of nodes. Suppose you want to
match all elements, except div, you can now write a pattern like
match="element() except div.

• Parenthesized patterns. On the face, this is a trivial change, allowing parentheses
around pattern expressions. However, the details of the syntax rules provide a
loophole to match against disjunctive trees (as opposed to matching only
against the current node and its ancestors), for instance, chapter/(/section/
list)/para is a valid expression. How this can play out, and how processors
support this kind of expression is explained in the section on parenthesized
patterns.

• Additional functions in rooted patterns. In XSLT 1.0 and 2.0, a pattern was
allowed to start with id and key. Especially the latter has proven to be very
useful in XSLT 1.0 to provide Muenchian Grouping27 and other optimizations.
XSLT 3.0 expands on this set by adding: doc, element-with-id, root. These
functions, esp. the doc function, can add a simple, but powerful way to check
for the origin of nodes. The root function can be helpful with, contrary to its
name, matching against parentless nodes. This will be explored in the section
on new functions.

• Rooted patterns with variable reference. A rooted path can start with a variable
reference, as with $doc/chapter. This allows to match against the same tree
the variable reference refers to. This effectively allows certain patterns with

27Muenchian, or Münchian Grouping was a technique developed by Steve Münch that allowed effi-
cient grouping in XSLT 1.0. Since the advent of xsl:for-each-group in XSLT 2.0, this has become a
less needed technique, but keys can still be used to speed up matches in particularly complex cases
that would otherwise involve expensive O(n^2) predicates with the following(-sibling) or
preceding(-sibling) axes. For more info and a discussion, see [11].

Powerful patterns with XSLT 3.0 hidden improvements

83

axes that would've otherwise been illegal in the pattern syntax. The section on
rooted patterns explores this deeper.

• Comments in patterns. Strictly speaking, XSLT 2.0 did not allow XPath-style
comments of the form (: a comment here :) to be used within patterns. In
XSLT 3.0 this is allowed in all places where XPath allows it, to align it better
with XPath. This can be useful to document large and complex, multi-line pat-
terns.

• Errors in patterns match false. In XSLT 2.0 errors in patterns were considered
recoverable errors. The notion of recoverable errors has disappeared entirely in
XSLT 3.0, and the default action on such errors is now mandatory. This means
that an error in a pattern, other than a static error or static type error, will lead
to a pattern never matching. Such errors can happen dynamically, for instance
when converting a node to number and there is now no way to catch such
errors anymore. See section on errors for a way around this limitation.

3.2. Other related new features

Apart from the above list, there are several smaller changes in relation to patterns
that have improved or changed, and some other new features that are also useful
in patterns.

• Streamable patterns. If you need to process large documents, XSLT 3.0 introdu-
ces the streaming feature28, which requires the patterns to be streamable. This
paper will not go into this subject as it is vast and beyond its scope, however, I
and others have previously given talks on streaming, see [1], [2], [5], [6].

• Explicit mode declarations. Previously, modes existed just by naming them in
the mode attribute of xsl:template. It is now possible to give a mode more
properties and to explicitly declare them with xsl:mode, such as that typed
input is required, what to do when there is no match, what accumulators are
applicable and whether streaming is allowed. Furthermore, mistakes in nam-
ing modes can be caught by using declared-modes="true".

• Initial match selection. Previously, the input to an XSLT stylesheet was a single
document or node. If you were to process multiple documents, you would
need to use stylesheet parameters, or the doc, document or collection func-
tions. Now, the input can be any sequence of any type. It can be seen as if the
stylesheet was called with an initial call to xsl:apply-templates with the ini-
tial match selection as the result of its select expression.

28Whether a processor supports streaming can be checked with the expression system-
property('xsl:supports-streaming').

Powerful patterns with XSLT 3.0 hidden improvements

84

Each item in the initial match selection will be matched initially against the
available xsl:template declarations in the given mode, with the item, its
position and size of the selection as the focus.

• Matching parentless namespace nodes. This fixes a bug in XSLT 2.0. You were
allowed to have a pattern like match="namespace-node()", but it would only
ever match namespace nodes that have a parent. The rules have been updated
to allow it to match parentless namespace nodes29, and the namespace axis is
now also made available.

• Qualified names for root pattern functions. Previously it was illegal to use quali-
fied names like fn:id or fn:key within a pattern. This restriction is now lifted.
You can also a URI Qualified Name like Q{http://www.w3.org/2005/xpath-
functions}doc, which is sometimes helpful in auto-generated patterns, or
patterns that have been created using the new XPath 3.0 path function30.

• Expanded QNames for name-tests. Technically a feature of XPath 3.0 [12] and 3.1
[13], an expanded qualified name, or EQName can now be used as a name-test.
An EQName has the form Q{nsURI}localpart. Within the accolades, which is
whitespace-sensitive, you put the namespace URI, after the closing accolade,
you put the local name. The namespace does not have to be declared, which
can be handy if you need a namespace only once, or when the paths are cre-
ated from output from the fn:path function.

Suppose you have a namespace declared and in scope as
xmlns:ns="urn:my-namespace, then ns:person and Q{urn:my-
namespace}person are equivalent for all intents and purposes. Likewise, ns:*
is the same as Q{urn:my-namespace}*.

• Third argument in key is allowed. You can now write key(X, Y, Z), where Z
points to a document node that the key should appear in. This allows you to
use a global variable as the third argument, set to an external document and to
match over that explicitly using keys. In certain cases this simplifies stylesheet
development that involves multiple documents.

• Second argument in fn:id and fn:element-with-id. Similar to previous point, where
you can set the second argument to a document rooted in a specific tree, by
using a global variable that points to such tree. That way, these functions will
only match on id's in that specific document.

29A parentless namespace node is very rare, and arguable, matching over them even rarer. You can
create one throug the new copy-of function, the xsl:copy(-of) instruction, or by using the
xsl:namespace declaration.
30The fn:path function will output Q{http://www.w3.org/2005/xpath-functions}root as the start
for paths that include a root when the root is not a document node.

Powerful patterns with XSLT 3.0 hidden improvements

85

• union instead of | can now be used. This change merely aligns the pattern syntax
better with the XPath syntax. Writing foo union bar was disallowed in XSLT
2.0 and could only be written as foo | bar. This restriction is now lifted.

• Patterns as shadow attributes. Since XSLT 3.0 you can turn any attribute into a
statically expanded attribute, aka shadow attribute, that takes an XPath expres-
sion that is evaluated at compile-time. To do so, simply prepend it with an
underscore _. For instance, writing <xsl:template _match="$var" means
that you can set the static parameter $var to whatever pattern you want. This
feature allows for a certain level of meta-programming.
All the changes to the pattern syntax are available in all locations where pat-

terns are allowed. These places are:
• xsl:template, the match attribute,
• xsl:number, the count and from attributes,
• xsl:accumulator-rule, the match attribute,
• xsl:for-each-group, the group-starting-with and group-ending-with
attributes.

• xsl:key, the match attribute.

4. Position and size in XSLT 3.0 patterns
In XSLT 2.0, it was simple: position was always relative to the child axis, even
when you used the // operator, since the latter expands to / descendant-or-
self::node()/, and a name-test without a specific axis is essentially a child-axis
name-test. Which means, given an expression like foo// bar, this expands to
child::foo/descendant-or-self::node()/child::bar and if you were to use a
positional predicate, as with foo//bar[4], this would therefore select the fourth
bar child element.

This all changes in XSLT 3.0, where all forward axis are available in a pattern
expression, plus parenthesized expressions also influence counting. The counting
rules are the same as with XPath, and have not changed since XPath 1.0. For every
axis, the counting is done based on the node test. The node test is the part after
the ::. For instance, child::author counts only the elements that match author;
child::* counts all elements, child::node() counts all nodes etc.

If predicates are chained, the size and position are dependent on the predi-
cates that come before. For instance, child::author[@name][3] will select the
third element that has name author and attribute name. Once a step expression
returns a singleton, size and position remain 1. Predicates can never increase the
size of the set.

As a summary, counting is as follows:
• child axis: counts towards the immediate children, order is document order.

Powerful patterns with XSLT 3.0 hidden improvements

86

• attribute axis: counts the attributes, order is implementation dependent, but
stable.

• namespace axis: counts the namespace nodes, order is implementation depend-
ent, but stable.

• descendant axis: counts all children and children of children etc, depth-first,
order is document order.

• descendant-or-self axis: same as descendant axis, but includes self, provided it
matches the nametest, of course.

• self axis: counts only self, that is, size is 1 or 0.
• no axis, depends:

• implicit child axis, this is true if axis is absent for a name test, like with
person, or it is a kind test for element, comment, text or processing instruc-
tion. Then same as child axis above.

• implicit attribute axis, this is true if it is a kind test for an attribute node, like
attribute(age). Then same as attribute axis above. The @ prefix is a short
way of explicitly using the attribute axis.

• implicit namespace axis, this is true if it is a kind test for a namespace node,
like namespace-node(). Then same as namespace axis above.

• implicit self axis, this is only true if it is the first step of a pattern, and the
step is a document node kind test, like document-node() or document-
node(element(root)). Then same as self axis above.

Special attention should go to the position of parentless nodes. Suppose you
have a variable like the following:

<xsl:variable name="people" as="element()*">
 <person>John Doe</person>
 <person>Angela Dickens</person>
</xsl:variable>
If you apply over this variable with xsl:apply-templates, to match the

parentless node you can simply do match="person", since special rules require
this to match child or top elements. But suppose you want to match the second
person in $people? You may be tempted to do match="person[2]". But this will
never match anything, because the elements inside the variable are without
parent, they do not have a root document node.

However, after entering the template, the position in the sequence and the size
of the sequence are available. As a workaround you can use something like
<xsl:if test="position() = 2">.... Another workaround is to change the
variable to have an implicit document node, which you can achieve by, for
instance, omitting the as="element()*"31.

Powerful patterns with XSLT 3.0 hidden improvements

87

5. Reading a pattern
What is a pattern really? What does it mean to write match="book/title"? Pat-
terns are designed to allow processors to quickly determine if a node belongs to a
given pattern. A pattern itself is a subset of an XPath expression, simplified pre-
cisely for this purpose. The reason that only a subset of axes is available is to
allow all steps on a pattern to be exclusively on the ancestor axis alone.
Officially, a pattern answers the question: given an pattern P, and a node N,

then, with focus on N and with its position and size set to 132, does N occur in the
result of the expression root(.)//(P)33? As an example, consider the following
two templates:

<xsl:template match="book[1]/title">
 <first-book><xsl:value-of select="." /></first-book>
</xsl:template>

<xsl:template match="title">
 <other-book><xsl:value-of select="." /></other-book>
</xsl:template>
the pattern book[1]/title and the following input document:

<list>
 <book>
 <title>Lord of the Rings</title>
 </book>
 <book>
 <title>Lord of the Rings</title>
 </book>
 <book>
 ... etc
</list>
Then answering the question could go something as follows:

• Set N to be the current node, let's say we're processing the first title element
through <xsl:apply-templates select="/list/book/title" />.

• Set its position and size to 1. Now . refers to the node, position() is 1 and
last() is 1.

• Evaluate the XPath expression root(.)//(book[1]/title). The result is the
first title element, let's call it R.

31A variable without an as-clause, that has a sequence constructor (as opposed to a select-statement),
defaults to creating a document node with as its contents the contents of the sequence constructor.
32This is called a singleton focus.
33There's a little bit more to getting to a proper equivalent expression, the specification gives details to
work around some corner cases of top-level nodes and parentless nodes, see section 5.5.3 of [18].

Powerful patterns with XSLT 3.0 hidden improvements

88

• Check if the result R contains N.
• Result is true, which means the contained template will be processed.

Next, the processor will do the same for the next element from the expression
"/list/book/title", which is the second book's title element:
• N is set to the second title element in the same way
• Again, we evalute the equivalent expression root(.)//(book[1]/title). The

result R is again the first title element.
• Check if the result R contains N (which is now the second title).
• Result is false, which means the contained template will not be processed and

the next template based on priority will be checked.
• The equivalent expression for the next template is root(.)// (title). The

result R is now every title element from the source.
• Check if the result R contains N (still the second title).
• Result is true, the processor will evaluate the second template from our exam-

ple (the one with match="title").
The above approach is a definitive approach to determining whether a tem-

plate's pattern matches a given node. Certain corner-cases for parentless nodes
are given special treatment though. For instance, if a node does not have a parent,
a pattern like title will still match this node, even though it would officially be
expanded into child::title by the XPath rules. In the specification, these first
axes of the path are called child-or-top, attribute-or-top and namespace-or-
top and they work as one might expect from the names: they either match a child
node, or the top node (that is, the node that is at the root of the tree).

5.1. Reading from the left and a note on performance
Processors won't use the equivalent expression approach internally, since that
would mean going over the whole tree for each pattern time and time again.
Instead, processors likely use the information of the current node that is readily
available without moving away from the node, or having to browse the children
or descendants, where possible.

As briefly mentioned in the previous section, the allowed axes and steps to be
taken in a pattern are chosen such that it is only ever needed to traverse the ances-
tor-or-self axis of the current node. This allows for virtually an O(1) performance
with respect to the size of the whole tree (technically, it would be O(1) best case
and O(n) worst case, where n is the depth of the tree, not the size of the tree, but
since most trees have a limited depth, this is irrelevant in almost all cases).

To do this, patterns that match element nodes, which are the most common
type of pattern, are considered right-to-left. That is, if you remove the predicates,
the right-most path expression is first evaluated. This is typically fast, because

Powerful patterns with XSLT 3.0 hidden improvements

89

most patterns will have name-tests or type-tests at the right-most position and all
a processor needs to to is to check if the name of the current node, and its type,
match the current pattern.

The same process is applied recursively to the next step in the pattern. For a
pattern such as book/author/surname, the algorithm is typically as follows 34 (see
also [9]):
• Test if the current node is an element;
• If yes, test if the QName of the current node is surname;
• If yes, test if the parent has the QName author;
• If yes, test if the next parent has the QName book;
• Apply the predicates, either left-to-right or right-to-left, depending on existing

keys, optimizations and performance characteristic per predicate35.
The method holds well for XSLT 1.0 and 2.0, but for XSLT 3.0, it becomes a

little more complex. The reason for this is that in XSLT 1.0 and 2.0 a processor
only needs to check the parent axis, and with the exception of // expressions,
does not need to do any backtracking. Furthermore, overlap is not possible (every
step will move up at least one level on the ancestor axis).

In XSLT 3.0, the new axes descendant(-or-self) and self allow overlap and
require a different approach to counting with respect to predicates. Add to that
further complexity introduced by parenthesized patterns such as (a//b)/(c//d),
patterns with except and intersect, and combinations like (* except foo/
bar)/zed which leads to multi-level decision tree, with each having a certain set
of backtracking.

Still, patterns are processed right-to-left, similar to the original. And if perform-
ance is important, or you fear your patterns are slowing the processor down, fol-
lowing the expression from right-to-left through matching and non-matching
nodes is a good exercise in finding out bottlenecks. For instance, say your pattern
is (descendant::node() intersect descendant::book// author)// name, the
processor needs to do a lot to calculate the intersection of all the descendant
nodes. In this case, rewriting it like descendant::book// author// name, may
already yield a better performance. And since we arent counting on the descend-
ant axis, this is equivalent to book//author//name.

Another sure sign where the processor may require too much backtracking36

is with overlapping axes. If you have multiple // and/or multiple descendant(-
34Each processor will likely have its own optimization, but this approach is as good as any to under-
stand the general principle behind most pattern matching algorithms.
35An optimizing processor will likely process a predicate like [1] or [@foo] before it will process
expensive predicates like [//x[preceding-sibling::y]].
36The principal of backtracking in patterns is similar to backtracking as used in regular expressions,
and can be similarly detrimental to the performance of the pattern, and other than with regexes,
greediness cannot be controlled.

Powerful patterns with XSLT 3.0 hidden improvements

90

or-self) axes in your path, consider analyzing whether you can rewrite it with-
out these paths. For instance, say you have descendant::a/descendant::b, but
you know that these are either one or two ancestors away from each other, you
can simplify this, and likely speed up, by writing a/(* | */*)/b. This kind of
optimization did not exist in XSLT 2.0 and can prove quite powerful in practice.

6. Writing patterns
This section explores some patterns that are now possible in XSLT 3.0 that weren't
that easy or typical in XSLT 2.0.

6.1. Matching every node

For backward compatibility reasons, the expression node() without an explicit
axis does not match every node. It only matches nodes that can be a child, that is,
that would, in any other position, match the XPath expression child::node():
element, text, comment and processing instruction nodes. It does not match attrib-
utes, namespace or document nodes.

Since, in most scenarios, programmers have a special template for the top
document node, and are not interested in processing namespace nodes specifi-
cally, matching every node in root-position or any other position is not often a
requirement. However, processing attribute nodes is quite common. A typical
pattern for processing attribute nodes and any other node (except namespace and
document nodes) is match="node() | @*", or more explicitly, match="node() |
attribute::node()".

To truly match any node, several expressions can be used. In XSLT 2.0, such
expression would look something like match=" / | node() | @* | namespace-
node()"37

. In XSLT 3.0, you have more freedom over this because of the new pattern
language features; all the following expressions match any node:

• .[self::node()]
• .[. instance of node()]
• document-node() | node() | attribute() | namespace-node()
• self::node()
• descendant-or-self::node(), but this is less self-explanatory than the previ-

ous choice.

37This wouldn't, however, match parentless namespace nodes, this was an omission in XSLT 2.0 and
has been rectified in XSLT 3.0.

Powerful patterns with XSLT 3.0 hidden improvements

91

6.2. Matching the new axes

In XSLT 2.0, only the child and attribute axes were available, and indirectly the
descendant axis through x//y, but as explained above, technically the y nametest
is still on the child axis. This changes in XSLT 3.0 with the addition of all forward
axes to be available at the top-level of a pattern. Their meaning is the same as in
XPath, but as a refresher, here are all axes and their invluence on the matching
behavior of the pattern:
• descendant::x, matches x at any depth in the tree, except if it is a root node.

Position and size are those of the descendant axis that match x in the current
selection.

• descendant-or-self::x, matches x at any depth and when it is itself x. Posi-
tion and size are those of the descendant-or-self axis that match x, meaning
the self-node has position 1, and the rest is the same as the descendant axis
position & size +1.

• self::x, matches x on the self axis. Position and size are always 1, if x is
matched.

• namespace::x, matches namespace nodes x, position is implementation-
dependent, but stable during a transformation, and size is the number of
namespaces that match x in the current selection.
There's little use in using these axes on the first step in a path expression,

unless position is important in the predicate. Using these new axis, it become
much easier to count towards the descendant(-or-self) axis for position and size
as it was in XSLT 2.0, where this wasn't directly possible. Example, consider the
following input document:

<head>
 <div>
 <p>The quick brown fox</p>
 </div>
 <div>
 <p>jumps over</p>
 </div>
 <div>
 <p>the lazy dog</p>
 </div>
</head>
A pattern like match="//p[last()]" would match every p in this input docu-

ment, because it counts towards the child axis just like in XSLT 2.0, but this is
probably not what the user intended. If you want to get the last paragraph only,
you can match that now directly by using match="/ descendant::p[last()]",
which will only match the last paragraph, regardless whether it is preceded by

Powerful patterns with XSLT 3.0 hidden improvements

92

other elements. The leading / is required to force counting descendants from the
root.

One possible XSLT 2.0 equivalent would be to solve this in the xsl:apply-
templates select expression, or by using a more complex expression like
match="div[last()]/p", which is also much harder for a processor to optimize
because it requires evaluation of div children each time it encounters a p38.

6.3. Matching nodes with or without a parent
It is quite common to have intermediate trees that are elements, or other node
kinds, without a document node at their root. For instance, suppose you have
<xsl:variable select="copy-of(para)" />, all para elements in this sequence
are without parent. Similarly, if you have something like the following:

<xsl:variable name="config" as="element()*">
 <source ip="123.43.22.3" />
 <protocol type="odbc" />
 <port>1433</port>
</xsl:variable>
then the three elements here, source, protocol and port will not have a

document node as their parent. Therefor, writing match="/ source" will not
match the source element.

In many cases this is not a problem, as simply omitting the "/" in this case
will match source. The following patterns can be used if you need to match
nodes with, or without a parent:
• Child of a document node: /nodename.
• Rooted at a document node, at any level: //nodename.
• Rooted at an element or document node, at any level: nodename.
• Top-level node not-rooted at a document node:

nodename[not(parent::document-node())].
• Top-level node of any kind: nodename[not(parent::node())].
• Node at any level, not-rooted at a document node: nodename[root()

[not(self::document-node())]].
• Node at any level, except root node, regardless whether the root is a docu-

ment node or not: descendant::nodename.
• Node at any level, including root node, regardless whether the root is a docu-

ment node or not: descendant-or-self::nodename. Unless position is impor-

38It can be assumed that a processor keeps track of certain sizes and positions, but it cannot keep track
of all, and specifically predicates tend to require more processor time than straight paths that have a
maximum evaluation time of O(1) for all intends and purposes, assuming the hierarchy is not too
deep.

Powerful patterns with XSLT 3.0 hidden improvements

93

tant in your predicate, this behavior can also be reached with just
self::nodename.
See also the section on root() below, which expands on this list a bit.
You may be tempted to write that last and 2nd from last as nodename[not(/)]

or nodename[not(/)], however, the XPath expression / or // must raise an
error39 when the root is not a document node. As a result, such patterns would
never match anything, as errors are considered non-matches. To overcome this
error, and to match nodes that do not have a document node at their root, we
need to use expressions that do not start with / or //. This error is, however, not
raised when // appears in the middle of a pattern or XPath expression.

In the list above, you can replace nodename with any node test or node type
test.

6.4. Matching complex patterns through variables
Since XSLT 3.0, you can start a pattern with a (usually global) variable reference.
This means that the rest of the pattern will only be a positive match if it is rooted
at the same node as the variable. Suppose you need to make several matches that
repeat the same first part of the pattern over and over, then you could do some-
thing like this:

<xsl:variable name="section"
 select="book/contents/(chapter | foreword)//section" />

<xsl:template match="$section/para[1]"> ...
<xsl:template match="$section/footnote">...
<xsl:template match="$section/biblioref">...
Using a coding pattern like this allows for better self-documenting code. The

one downside of this approach is that template patterns can only reference global
variables and parameters. If you need to match multiple documents, or your ini-
tial match selection is not the same as the global context item, you can extend this
coding pattern by adding doc(...) in front of the expression, assuming you
know the document URIs.

This approach is more flexible when used inside xsl:number or xsl:for-
each-group, since you'll have access to all in-scope variables.

6.5. The use-case for root()
Since XSLT 3.0 you can start your pattern with the function root(). Inside a pat-
tern that function can only be used without a parameter. It can be useful to match

39The error raised is XPDY0050, which is a treat as error, because / is short for
(fn:root(self::node()) treat as document-node()), and // is short for
(fn:root(self::node()) treat as document-node())/descendant-or-self::node()/.

Powerful patterns with XSLT 3.0 hidden improvements

94

from the root of a tree, regardless of whether the root is a document node or
something else. Furthermore, the root() function always succeeds and doesn't
throw an error like // or / (errors in patterns are hidden and lead to a non-
match). Some examples:

• Match any node that is top-most: root().

• Match a specific node that is top-most: root()[self::nodename], or root()
[self::attribute()].

• Match any non-top element: root()/descendant::nodename.

• Count the descendant axis from the top: root()/descendant::para[3] will
select one, and only one para element that is the third such element from the
root of the tree. Conversely, note that descendant::para[3] will select each
para element that is the third such descendant from some ancestor40, and that
the XSLT 2.0 style //para[3] will only select the third child para element.

• Match the top-most element, whether it is parentless, or has a document-node
as root: root()/ descendant-or-self::*[1], or alternatively, root()/
(self::* | *)[1].

In general, it is good practice to use root() instead of / or // so that your
code is resilient for sources that are rooted at a document node and the ones that
are rooted at something else, like an element node.

The main difference to remember is that if the tree has an element at its root,
instead of a document-node, that root()/x will select the child x of that parentless
root element, or the root element if there's a document node. If you know this
beforehand, you can use the self axis if you need to access the parentless root ele-
ment. If you deal with either parentless root elements, or root elements under a
document-node, then use the trick of the last bullet point above to select the high-
est element in the tree.

6.6. Patterns with doc()

The doc function, not to be confused with the document function, matches zero or
one document nodes, if and only if the given URI matches the document URI of
the node that is currently being tested. Just like the other so-called rooted patterns,
the doc function can only appear at the start of an expression41. Some examples:

• Match nodes inside a specific document only: doc('source.xml')/ paper/
section

40Note that if the root element is parentless and can be para, you could also write root()/
descendant-or-self::para[3] to include that element in the counting.
41See for an exception to this rule, parenthesized expressions.

Powerful patterns with XSLT 3.0 hidden improvements

95

• Equivalent XSLT 2.0 pattern would be: / paper/
section[doc('source.xml')], but this expression is harder to optimize for a
processor.

• Match nodes that have the same URI as the current XSLT stylesheet: doc('')/
xsl:stylesheet/xsl:param42.

6.7. Patterns with except and intersect
Not possible in XSLT 2.0, but now allowed in XSLT 3.0: patterns with intersect
and except. These patterns work essentially the same as their XPath equivalent.
That is, A intersect B, where A and B are themselves patterns, will only match
if the current node is in both A and B. And A except B only matches if the current
node is in A, but not in B.

Some examples:
• self::node() except title matches every node, but not title.
• para/descendant::*[4] intersect child::*[1] matches elements that are

the fourth descendant under para and are the first child element of any other
element.

• *:para except ns:para matches all para elements in any namespace, except
the ones in the ns namespace.

• * except (foo | bar) matches all elements, except foo or bar.
• * except foo except bar matches all elements, except foo or bar.
• (node() | @*) except * except foo, matches all nodes, except elements.

The last part, except foo is irrelevant, because except expressions are grou-
ped left-to-right. Meaning, this can be read as ((node() | @*) except *)
except foo, and the first part already eliminates all elements. See next bullet
for a workaround.

• (node() | @*) except (* except foo), matches all nodes, except all ele-
ments, except for the element foo.

• *[@age] intersect *[@name], matches all elements that have both a name
and an age attribute. Another way of writing this is by using two adjacent
predicates: *[@age][@name].

6.8. Root level parenthesized patterns
It seems such a small change, allowing parens, but is opens up a lot of creative
and useful patterns that were much harder to express in XSLT 2.0. Originally, the

42This works, because the empty string is a relative URI that will be expanded using the rules for
resolve-uri, which means that it has the same URI as the containing document, in this case the XSLT
document where the pattern appears.

Powerful patterns with XSLT 3.0 hidden improvements

96

intention of adding this feature was to allow such parenthesized expressions at
the root level of the pattern. That is, "(foo | bar)[2]", or "* except (p |
para)". The official syntax, however, makes it legal to also write sub-expressions
as part of a path expression, that is, expressions such as "chapter/(para | p)/
text(). These will be explored in the next section.

Parenthesized patterns open up the following use-cases:

• Position and size of grouped patterns, including the axis. The pattern
chapter/descendant::p[3] will select every p that is a third descendant of
chapter. But (chapter/descendant::p)[3] will first group all of chapter/
descendant::p, and of that set, it takes the third p, this will likely select only
one node, unless chapter is nested in itself in the source document.

• Position and size of union patterns. Suppose your document paragraphs
defined as span, p and div elements, then you can apply predicates on the
combination of these elements, for instance, (span | p | div)[@class='x']
[position() > 1]. This will select any span, p or div that is not the first span,
p or div counted from its parent.

• Matching over multiple documents: you can use parens with root level func-
tions, this allows you to write something like (doc('a.xml') |
doc('b.xml'))//section, which will only apply to documents "a.xml" and
"b.xml", but not others.

• Top-level subexpressions. This adds to the expressiveness of mixing operators
except, intersect and union in patterns, where the operand can be parenthe-
sized. For instance, * except (para | p) will match all elements except para
or p.

• Treat union expressions as a single expression. By default, a template with
top-level expression that includes union or | is split up in multiple matching
templates. Each of these templates will have its own priority based on that
pattern. If you have match="div | p/span", it will be split in one template
with match="div", with priority 0.0 and one template with match="p/span",
with priority +0.5. In most cases this is not problematic, but you can over-
come this by writing match="(div | p/span)[true()], which will have pri-
ority +0.5 for both div and p/span. The added predicate is necessary, because
the specification requires redundant outer parameters to be removed before
assigning the priority; the predicate prevents that from happening.

• Explicitly counting the descendant axis from an anchor. In cases where you
may have overlapping nodes (like a section within a section, or a div
within a div), and you want to find the Nth node counted from the top-level
of such overlapping nodes, you cannot simply do section/
descendant::para[2], because that will restart counting from each section.

Powerful patterns with XSLT 3.0 hidden improvements

97

Instead, you can use root() to anchor the counting: //(* except section)/
descendant::para[2]
Note that it is not possible to use parentheses with predicate patterns. It is there-

fore illegal to write "(.[. = 't'] | .[@foo])". The reason for this is simple:
this prevents patterns that match only nodes and patterns that match anything
(predicate patterns) to be mixed.

6.9. Parenthesized steps in patterns
As briefly explained in the previous section, the specification allows you to paren-
thesize steps. That means, given a/b/c, any of the steps a or b or c can be paren-
thesized. Each of these parenthesized steps can contain a full pattern (but not a
predicate pattern).

Suppose you want to match a path on a child of para and p at the same time.
In XSLT 2.0, this could be written with predicates like *[self::para |
self::p]/ span. Predicates are, however, comparatively hard to optimize effi-
ciently by processors. A more performant pattern expression in XSLT 3.0 would
be (para | p)/span.

At the moment of this writing, not all processors support this type of pattern
natively, even though it is part of the XSLT 3.0 specification. An exception is
Exselt [7], which does allow parenthesized step expressions, and Saxon [10], but
the latter currently only if the step in parentheses is a simple, single expression or
step. Some more examples:
• chapter/(* except section)/para will match all para elements that have

any parent, except section, and a grand-parent chapter.
• html//(div | p)/descendant::span, will match all span that are under a

div or p element.
• list/(* | */* | */*/*)/listitem will only match listitem elements that

are two, three or four levels deep under list. An equivalent variant is rela-
tively hard to achieve here, but typically it is solved in XSLT 2.0 with a predi-
cate like this: list// listitem[count(ancestor::*) le 3], but here the
ancestor axis would include list and ancestors before that, and more com-
plex code is needed. The parenthesized pattern is a much easier solution.

• a/(b/c | e/f/g)/j will match a path a followed by one of the paths in the
parens, followed by j. This form is quite powerful in writing deterministic
patterns where you want to match over several sub-paths.

6.10. Disjunctive patterns with parenthesized rooted steps
Since a parenthesized step in a pattern can contain any pattern, it can itself start
with a rooted step, that is, a step that starts with //, /, id(), doc(), root(),

Powerful patterns with XSLT 3.0 hidden improvements

98

element-with-id(), key() or a variable reference. Such a step has the effect of
breaking out of the tree, because the rooted step will go to the root of the tree. Any-
thing before that must be in the tree, but not necessarily on the same ancestor
path. Anything after it behaves like a normal path expression in a pattern.

This type of patterns is not supported by any processor that I know of, though
it is part of the specification. This may be because of the complexity of matching it
efficiently, as for the match to be evaluated, often the whole tree will need to be
evaluated. A subset of these expressions is supported by Exselt [7] at the moment:
those where all nodes exist on the ancestor axis of the current node.

A pattern becomes a disjunctive pattern if at least one step is a rooted step and
the rooted step is not the first step (parameterized or not). A pattern like (/root
| /head)/footer (a footer with parent head or root) is not disjunctive, as all
path segments are still on the same ancestor axis, the left-most step being the root
step. But once the root step is not the left-most step, it becomes disjunctive. If we
were the previous expression as footer/(/root | /head) it would match head
or root, but only if anywhere in the tree there's also a footer element, hence the
term disjunctive: it breaks the common rule of patterns that all steps must be on
the ancestor axis.

To read a pattern like this, anything to the left of a rooted step should be con-
sidered as an equivalent predicate that searches the whole tree. Such a rewrite
doesn't always hold, but in the general case it suffices. For instance, para/ (/
root/ div) can be rewitten as / root/ div[root()// para] for most cases. The
right-most part after the rooted step still behaves like a normal pattern, that is, the
right-most step still has to match the current node, as can also be seen in the
equivalent pattern.

Some other examples of this type of pattern, including the rough equivalent:
• section/ chapter/ (/) will select the document node, provided that that

document has, at any level, a chapter with a parent section. This is broadly
equivalent to (/)[//section/chapter]

• section/(/root)/(/)//chapter will match if the current node is chapter,
has a top-level element root and has an element section at any level. The
broadly equivalent pattern is //chapter[/root][//section].

• (/)/(root | start)/(/)/comment() matches a comment node that belongs
to a document node that has a top-level element of either root or start. The
broadly equivalent pattern is comment()[/root | /start], which is arbuably
easier to read.

• div/($someVar)//*. Matches any node in $someVar, provided that it also con-
tains div at any level. The broadly equivalent pattern is $someVar[//div]//*.

• doc('a.xml')/(id('b12')) will match an element with id 'b12', provided
the document being applied over has relative URI "a.xml".

Powerful patterns with XSLT 3.0 hidden improvements

99

• id('b12')/(id('b13')) will match any element that has two ID attributes,
'b12' and b13'.

• (//doc)/(//chapter)/(//section)//endnote will match any endnote, pro-
vided the document contains at least one element section, chapter and doc
at any position in the document as well.
As can be seen in this short list, such expressions can quickly become hard to

read, and in most cases they will have proper equivalent pattern expressions
using predicates. Since support in processors is unreliable, at the moment it is
better to stay away from such expressions.

The syntax in this section was discussed by the XSLT Working Group and was
considered valid, yet sufficiently peculiar to warrant an editorial erratum entry
E18, see [17]. In the related bug entry [3], the validity and variants of this behav-
ior were discussed. The source of the peculiarity is that the syntax allows id(..)/
(id(..)) or div/($var), but not id(..)/id(..) or div/$var. The parentheses
appear to be redundant, and in XPath they are, but are required in a pattern to
make the steps valid if you want to use a function in something else than the first
step.

7. Surprising patterns
As a bonus, let's list a few surprising patterns. Most of them are surprising
because they expose subtleties in the pattern or XPath language.

7.1. Single step axes, subtle differences

The differences between several one-step, or almost one-step element tests. Most
commonly, one would write simply match="para" to match an element named
para, but what are the differences when you add an axis?

In the following overview, counts overlapping nodes means whether or not a
positional predicate may match more-than-one node. Consider the following
input:

<root>
 <para>Some text</para>
 <para>a <para>nested</para> paragraph</para>
</root>
Here, the third para is nested inside the second para. If overlapping nodes are

counted, it means that counting can start from different ancestors. For instance,
descendant-or-self::para[2] will match both the second and the third para,
because it can start counting descendants from root or from any other node, and
here, counting from the second para will give the second position to the third
para. To remedy this, you can anchor the counting, for instance by starting the

Powerful patterns with XSLT 3.0 hidden improvements

100

pattern with a non-ambiguous, non-overlapping node test. In this case, root/
descendant-or-self::para[2] would match only the second overlapping para
from root.
• para and child::para are synonymous:

• with or without parent: both,
• position and size: as the child axis,
• counts overlapping nodes: no.

• self::para:
• with or without parent: both,
• position and size: always 1,
• counts overlapping nodes: no.

• descendant::para:
• with or without parent: only with,
• position and size: as the descendant axis,
• counts overlapping nodes: yes.

• descendant-or-self::para:
• with or without parent: both,
• position and size: as the descendant-or-self axis,
• counts overlapping nodes: yes.

• attribute::para, only matches attributes named para:
• with or without parent: both,
• position and size: as the attribute axis,
• counts overlapping nodes: no.

• namespace::para, only matches namespace nodes named para:
• with or without parent: both,
• position and size: as the namespace axis (position is processor-dependent,

but stable),
• counts overlapping nodes: no.

• /para:
• with or without parent: only with,
• position and size: typically 143,
• counts overlapping nodes: no.

• //para:

43It is possible to have a document node with multiple elements in a temporary tree like a variable,
but this is comparitively rare. Most documents have only one child element, the root element.

Powerful patterns with XSLT 3.0 hidden improvements

101

• with or without parent: only with,
• position and size: as the child axis,
• counts overlapping nodes: no.

• root()/para:
• with or without parent: both,
• position and size: as the child axis, typically 1,
• counts overlapping nodes: no.

• root()/self::para matches a para element that has no document node as
parent.

7.2. Potentially erroneous patterns
The following patterns should either be avoided, or written in a different way, or
are patterns that will never match.
• / @name or / attribute() never matches an attribute node. If you want to

match a top-level (parentless) attribute node, use root()/
self::attribute(name).

• *[local-name() = 'person']. This pattern is seen a lot in the wild, but
already since XSLT 2.0, this can be written much better using a partial wildcard
match44, in this case as *:person. This allows the processor to better optimize
matching, and it is easier to read and understand.

• //elem is a legal, yet commonly misunderstood pattern, seen in the wild a lot.
In all but a very few cases, this is exactly the same as just elem (without the
double slash) and both syntax variants count toward the child axis anyway.
The only exception is when you want to distinguish between an elem that has
a document node or not. A more performant pattern is than
descendant::elem, or elem[/]. Both only succeed if there is a document
node, just like //elem, but the latter requires the processor to test the whole
descendant axis to the root45.

• foo/ descendant::attribute() never matches anything. You'd probably
want foo//attribute(), since // allows the next step to use the default axis,
which for attribute() tests is, well, the attribute axis.

However, this is not the whole story. If you want to get all attributes of all
descendants, and you want to count them, or use positional predicates over
the whole set, you can use foo/(descendant-or-self::*/attribute()).

44A partial wildcard match is a wildcard match where either the namespace with "*:div", or the local
name with "ns:*", is the wildcard.
45Processors may have this optimized, but even for clarity, if you do need to distinguish between
parentless and elements with a document node as parent, then it is better to be explicit.

Powerful patterns with XSLT 3.0 hidden improvements

102

• /comment() matches comments, but only when they appear before or after the
root element of a document. This may be deliberate, but if you want to match
any comment that is at a root level, you can use root()/ self::comment()
| /comment().

• foo[empty(/)] or any variant with empty(/) or not(/) will never match any-
thing. The reason is that / throws an error when there is no document node at
the root of a tree, causing the match to fail silently.

When you use such expression, the intention was probably to match a
node that is not rooted at a document-node. One way of doing that is
foo[empty(root()/self::document-node())], which properly only matches
when there is no document at the root. Instead of a predicate, you can also use
the more readable root()/self::*/descendant-or-self::foo.

• foo[empty(root())] or any variant with empty(root()) or not(root()) will
never match anything. The root() function always succeeds and returns the
root of the tree. It does not determine whether the tree is rooted at a document
node.

• foo[empty(parent::node())] is a creative way of matching a top-level ele-
ment foo without a parent.

• (root() except /)//foo fails always for the same reason as foo[empty(/)]
fails: / throws an error when there is no document node root, and when the
root is a document node root, it also returns false.

• node() except / is unnecessary, node() by itself does not match document
nodes. See also next point.

• node() does not match document nodes, attributes or namespace nodes. It
only matches elements, comment nodes, text nodes and processing instruction
nodes. It is better written as self::node() in XSLT 3.0 or / | node() | @* in
XSLT 2.0 if you wish to match any node kind.

7.3. Descendant axis variants as middle step
The descendant axis is often abused, or misunderstood, and that's perhaps parti-
ally because in XSLT 2.0 you didn't really have a descendant axis in patterns to
begin with. Let's have a look at what variants are now available and how they
compare to one another:
• section//para or section//child::para:

• matches para at any depth,
• position and size: as the child axis,
• counts overlapping nodes: no.

• section/descendant::para:

Powerful patterns with XSLT 3.0 hidden improvements

103

• matches para at any depth,
• position and size: as the descendant axis,
• counts overlapping nodes: yes.

• section/descendant-or-self::para:
• matches para at any depth (but the -or-self is redundant in this exam-

ple),
• position and size: as the descendant-or-self axis,
• counts overlapping nodes: yes.

• section//self::para:
• matches para at any depth,
• position and size: always 1,
• counts overlapping nodes: no.

• section//descendant::para:
• matches para at any depth, but this pattern should be avoided, the // does

not add extra meaning and can lead to significant extra backtracking byt
the processor,

• position and size: as the descendant axis,
• counts overlapping nodes: yes.

• head// middle// tail// end is another pattern that is seen a lot in the wild.
Sometimes such patterns are a necessary evil if the depth of nesting is not
known beforehand. But more often than not, there's some knowledge of the
source tree structure and the depths are well-known and fixed (and I've seen
cases where the user only needed children and not descendants). If that is the
case, rewrite it with wildcard steps, something like: head/ */ middle/ */ */
tail/end. Rewriting such patterns to be more deterministic can significantly
speed up matching.

7.4. Predicate patterns and other suprising patterns
Last but not least, a few surprising and/or new patterns that are now avaialable in
XSLT 3.0. Remember, predicate patterns are the ones that start with a . and are fol-
lowed by zero or more predicates.
• .[. instance of node()] matches any node, which is notable, considering

that node() by itself only matches a subset (see item on node()).
• self::node() matches any node which is notable, considering that node() by

itself only matches a subset (see also item on node()).
• document-node() matches the document node, but only because the pattern

syntax rules have an explicit exception for this pattern. Normally, it would be

Powerful patterns with XSLT 3.0 hidden improvements

104

expanded as child::document-node(), which would never match anything,
but when used in a pattern, it is expanded as self::document-node().

• namespace-node() does not match a parentless namespace node in XSLT 2.0,
but does so in XSLT 3.0. This is so uncommon, that it doesn't even show up in
the list of changes of XSLT 3.0.

• $var/(/doc/column). If a variable is a reference, and not a copy of a node, its
ancestors are still accessible through patterns. Suppose you have
<xsl:variable name="var" select="/doc/*/row[1]" />, then this match-
ing pattern will match element column, even though it is a parent of row poin-
ted to by the variable.

• .[. instance of function(*)] matches any function. Inside the template
body, the context item expression "." will point to the function. For instance,
if the function takes an integer, you can do <xsl:value-of select=".
(42)" /> to get the value of the result of calling the function dynamically.

• .[. instance of map(*)] matches any kind of map.
• .[.('birthday') = 1984] matches when (a) the context item is a function or

map and (b) that function returns 1984 when the argument is 'birthday', or
(c) if it's a map, and the map returns 1984 for the key pointed to by
'birthday'. There is no need to explicitly test for whether the item is a func-
tion, because if it isn't, an error would be raised, and errors are ignored and
considered a non-match.

• .[. lt 42] matches any item or node whose atomized value is numeric and
less than 42, or that is untyped (like for nodes) and it can be converted to a
numeric value and is less than 42. It is different from node()[. lt 42] in that
it matches any kind of item.

• .[. instance of text() or . instance of xs:string] matches either
text nodes or strings. Explictly does not match element nodes that have text
content, or atomized values from nodes, because they do not derive from
string (they are typically xs:untypedAtomic).

• .[. castable as xs:string] will match any item that can be cast to a string.
This will include nodes, which can be atomized and their value can be cast to
string. Almost any item can be cast to strings, except function items.

• some/path/here/(/) matches a document node that contains the path that
precedes it, at any level. Can be used to differentiate between documents
based on their contents, and to switch to a different mode depending on that.
The XSLT 2.0 equivalent is to use a predicate instead. See also the section on
disjunctive patterns.

• person[current()/ @personref = @id]// biblo matches a biblio element
that has an attribute personref that is equal to the attribute id of ancestor ele-

Powerful patterns with XSLT 3.0 hidden improvements

105

ment person. This is an example of the use of the current() function, which
points to the node currently being matches against. Since XPath changes focus
from path to path, this way you can still reference the current element (here:
biblio) while at another part of the path.

8. Conclusion
Since XSLT 1.0, through XSLT 2.0 and now in XSLT 3.0 a lot has changed when it
comes to patterns. We've seen added root functions like doc() and root(), paren-
thesized expressions, adding a lot of extra power to patterns and better alignment
with XPath, like allowing patterns to use except and intersect. Among the big-
gest changes is perhaps the feature to match any kind of item through predicate
patterns that start with ..

Related to patterns, the addition of statically declaring several properties of
modes through xsl:mode adds structural clarity to modes and less chance of
typos when using declared-modes="yes". The vast extension of six types of
build-in templates makes several scenarios easier to write and requires less code
than with, say the modified identity template.

We've also seen that not all features are currently fully supported by all pro-
cessors, though most of it is, except for some fringe cases. Hopefully in the near
future we will see full support in all XSLT 3.0 processors, such that these power-
ful features can become available to everyone.

With more awareness of subtleties of pattern matching, especially the ones
shown in the last section, you will be able to write more robust stylesheets, with
hopefully less surprises and a better understanding of the underpinnings of pat-
tern matching.

Bibliography
[1] Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream.

10.14337/XMLLondon14.Braaksma01. XML London 2014 proceedings, pp24–
52, https://doi.org/10.14337/XMLLondon14.Braaksma01. Abel Braaksma. 2014.

[2] XSLT 3.0 Streaming for the masses. XML Prague 2014 proceedings, pp29–80,
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf. Abel
Braaksma. 2014.

[3] Patterns like a/(id('x')) are allowed by the syntax . https://www.w3.org/Bugs/
Public/show_bug.cgi?id=30229 (archive link). Abel Braaksma and Michael
Kay. 2013.

[4] Stylesheet Modularity in XSLT 3.0. Presented at XML Amsterdam 2013 http://
www.xmlamsterdam.com/pdf/2013/2013-michaelhkay-ansterdam.odp/46 (only
direct link is still available, it cannot be found from the homepage http://

Powerful patterns with XSLT 3.0 hidden improvements

106

https://doi.org/10.14337/XMLLondon14.Braaksma01
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
https://www.w3.org/Bugs/Public/show_bug.cgi?id=30229
https://www.w3.org/Bugs/Public/show_bug.cgi?id=30229
http://www.xmlamsterdam.com/pdf/2013/2013-michaelhkay-ansterdam.odp
http://www.xmlamsterdam.com/pdf/2013/2013-michaelhkay-ansterdam.odp
http://www.xmlamsterdam.com/

www.xmlamsterdam.com/). I saved a copy in the Wayback Machine so it is
available for the foreseeable future.. Michael Kay. 2013.

[5] Streaming in the Saxon XSLT Processor. XML Prague 2014 proceedings, pp81–
102, http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf.
Michael Kay. 2014.

[6] Analysing XSLT Streamability.. Presented at Balisage: The Markup Conference 2014,
Washington, DC, August 5 - 8, 2014. 10.4242/BalisageVol13.Lumley01.
Proceedings of Balisage: The Markup Conference 2014. Balisage Series on
Markup Technologies, vol. 13 (2014)https://doi.org/10.4242/
BalisageVol13.Lumley01. John Lumley. 2014.

[7] Exselt, a concurrent streaming processor. http://exselt.net. Abel Braaksma.
[8] XSLT and XPath On The Edge. 0-7654-4776-3. Jeni Tennison. 2001.
[9] Anatomy of an XSLT processor. https://www.ibm.com/developerworks/library/x-

xslt2/index.html. Michael Kay. 2001.
[10] Saxon XSLT processor. http://saxonica.com. Michael Kay.
[11] XSLT Grouping techniques. http://gandhimukul.tripod.com/xslt/

grouping.html. Mukul Gandhi, Jeni Tennison, Michael Kay, and and others.
2009.

[12] XML Path Language (XPath) 3.0, W3C Recommendation 08 April 2014. http://
www.w3.org/TR/xpath-30. Jonathan Robie, Don Chamberlin, Michael Dyck,
and John Snelson.

[13] XML Path Language (XPath) 3.1, W3C Recommendation 21 March 2017. http://
www.w3.org/TR/xpath-31. Jonathan Robie, Michael Dyck, and Josh Spiegel.

[14] XPath and XQuery Functions and Operators 3.0, W3C Recommendation 08 April
2014. https://www.w3.org/TR/xpath-functions-30. Michael Kay.

[15] XPath and XQuery Functions and Operators 3.1, W3C Recommendation 21 March
2017. https://www.w3.org/TR/xpath-functions-31. Michael Kay.

[16] XSL Transformations (XSLT) Version 2.0, W3C Recommendation 23 January 2007.
http://www.w3.org/TR/xslt20. Michael Kay.

[17] Draft Errata for XSL Transformations (XSLT) Version 3.0, 20 February 2019.
https://htmlpreview.github.io/?https://github.com/w3c/qtspecs/blob/master/
errata/xslt-30/html/xslt-30-errata.html, the source and reports being now at
https://github.com/w3c/qtspecs/tree/master/errata/xslt-30 . Michael Kay.

46 http://www.xmlamsterdam.com/pdf/2013/2013-michaelhkay-ansterdam.odp

Powerful patterns with XSLT 3.0 hidden improvements

107

http://www.xmlamsterdam.com/
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
https://doi.org/10.4242/BalisageVol13.Lumley01
https://doi.org/10.4242/BalisageVol13.Lumley01
http://exselt.net
https://www.ibm.com/developerworks/library/x-xslt2/index.html
https://www.ibm.com/developerworks/library/x-xslt2/index.html
http://saxonica.com
http://gandhimukul.tripod.com/xslt/grouping.html
http://gandhimukul.tripod.com/xslt/grouping.html
http://www.w3.org/TR/xpath-30
http://www.w3.org/TR/xpath-30
http://www.w3.org/TR/xpath-31
http://www.w3.org/TR/xpath-31
https://www.w3.org/TR/xpath-functions-30
https://www.w3.org/TR/xpath-functions-31
http://www.w3.org/TR/xslt20
https://htmlpreview.github.io/?https://github.com/w3c/qtspecs/blob/master/errata/xslt-30/html/xslt-30-errata.html
https://htmlpreview.github.io/?https://github.com/w3c/qtspecs/blob/master/errata/xslt-30/html/xslt-30-errata.html
https://github.com/w3c/qtspecs/tree/master/errata/xslt-30
http://www.xmlamsterdam.com/pdf/2013/2013-michaelhkay-ansterdam.odp

[18] XSL Transformations (XSLT) Version 3.0, W3C Recommendation 8 June 2017.
http://www.w3.org/TR/xslt-30. Michael Kay.

Powerful patterns with XSLT 3.0 hidden improvements

108

http://www.w3.org/TR/xslt-30

A Proposal for XSLT 4.0
Michael Kay

Saxonica
<mike@saxonica.com>

Abstract

This paper defines a set of proposed extensions to the XSLT 3.0 language
[18], suitable for inclusion in version 4.0 of the language were that ever to
be defined.

The proposed features are described in sufficient detail to enable the
functionality to be understood and assessed, but not in the microscopic
detail needed for the eventual language specification.

Brief motivation is given for each feature. The ideas have been collected
by the author both from his own experience in using XSLT 3.0 to develop
some sizable applications (such as an XSLT compiler: see [4], [3]), and also
from feedback from users, reported either directly to Saxonica in support
requests, or registered on internet forums such as StackOverflow.

1. Introduction

The W3C is no longer actively developing the XSLT and XPath languages, but this
does not mean that development has to stop. There is always the option of some
other organisation taking the language forward; the W3C document license
under which the specification is published 1 explicitly permits this, though use of
the XSLT name might need to be negotiated.

This paper is a sketch of new features that could be usefully added to the lan-
guage, based on experience and feedback from users of XSLT 3.0.

XSLT 3.0 (by which I include associated specifications such as XPath 3.1) intro-
duced some major innovations [18]. A major theme was support for streaming,
and by and large that aspect of the specification proved successful and complete;
I have not felt any need to propose changes in that area. Another major innova-
tion was packages (the ability to modularize a stylesheet into separate units of
compilation). I suspect that there is room for polishing the spec in this area, but to
date there has been relatively little feedback from users, so it is too early to know
where the improvement opportunities might lie. The third major innovation con-
cerns the data model, with the introduction of maps, arrays, JSON support, and
higher-order functions, and it is in these areas that most of the proposals in this

1See https://www.w3.org/Consortium/Legal/2015/doc-license

109

paper fall, reflecting that there has been signficant user experience gained in these
areas.

Some of this user experience comes from projects in which the author has
been directly involved, notably:
• Development of an XSLT compiler written in XSLT, reported in [4] and [3].

The resulting compiler, at the time of publication of this paper, is almost ready
for release.

• Development of an XSD validator written in XSLT, reported in [2] (The project
as described was 90% completed, but the code has never been released).

• An evaluation of the suitability of XSLT 3.0 for transforming JSON files, repor-
ted at XML Prague [1].

These projects stretched the capabilities of the XSLT language and in particular
involved heavy use of maps for representing data structures.

Other feedback has come from users attempting less ambitious projects, and
typically reporting difficulties either directly to Saxonica or on internet forums
such as StackOverflow.

The paper is concerned only with the technical content of the languages, and
not with the process by which any new version of the standards might be agreed.
In practice XSLT development is now being undertaken by only a small handful
of implementors, and therefore a more lightweight process for agreeing language
changes might be appropriate.

The proposal involves changes to the XPath language and the function library
as well as to XSLT itself. In this paper, rather than organise material according to
which specification is affected, I have arranged it thematically, so that the impact
of related changes can be more easily assessed. I have also tried to organise it so
that it can be read sequentially; I try never to use a new feature until it has been
introduced.

2. Types
Types are fundamental to everything else, so I will start with proposed modifica-
tions to the type system.

XSLT 3.0 (by which I include XPath 3.1) enriches the type system with maps
and arrays, which greatly enhances the power of the language. But experience
has shown some limitations.

2.1. Tuple types

Maps in XSLT 3.0 are often used in practice for structures in which the keys are
statically known. For example, a complex number might be represented as
map{"r": 1.0e0, "i": -1.0e0}. Declaring the type of this construct as

A Proposal for XSLT 4.0

110

map(xs:string, xs:double) doesn't do it justice: such a type definition allows
many values that don't actually represent complex numbers.

I propose instead to allow the type of these values to be expressed as tuple(r
as xs:double, i as xs:double).

Note that I'm not introducing tuples as a new kind of object here. The values
are still maps, and the set of operations that apply to tuples are exactly the same
as the operations that apply to maps. I'm only introducing a new way of describ-
ing and constraining the type.

A few details on the specification:
• The field names (here r and i) are always xs:string instances (for a map to

be valid against the tuple type definition, the keys must match these strings
under the same-key comparison rules). Normally the names must conform to
the rules for an xs:NCName; but to allow processing of any JSON object,
including objects with keys that contains special characters such as spaces, I
allow the field names to be arbitrary strings; if they are not NCNames, they must
be written in quotes.

• If the type allows the value of an entry to be empty (for example middle in
tuple(first as xs:string, middle as xs:string?, last as xs:string)
then the relevant entry can also be absent. Values where the entry is absent
can be distinguished from those where the entry is present but empty using
map:contains(), but both satisfy the type.

• The as clause may be omitted (for example tuple(r, i)). This is especially
useful when tuple types are used as match patterns, where it is only necessary
to give enough information to give an unambiguous match. Contrary to con-
vention, the default type for a field is not item()* but rather item()+: this
ensures that a type such as tuple(ssn) will only match a map if the entry
with key ssn is actually present.

• A tuple type may be defined as extensible by adding ,* to the list of fields, for
example tuple(first as xs:string, middle as xs:string?, last as
xs:string, *). An extensible tuple type allows the map to contain entries
additional to those listed, with no constraints on the keys or values; an inex-
tensible tuple type does not allow extra entries to appear.

• The subtype-supertype relation is defined across tuple types in the obvious
way: a tuple type T is a subtype of U if we can establish statically that all
instances of T are valid instances of U. This will take into account whether U is
extensible. Similarly a tuple type may be a subtype of a map type: for example
tuple(r as xs:double, i as xs:double) is a subtype of map(xs:string,
xs:anyAtomicType+). By transitivity, a tuple is therefore also a function.

• A processor is allowed to report a static error for a lookup expression X?N if it
can establish statically that X conforms to a tuple type which does not allow an

A Proposal for XSLT 4.0

111

entry named N. For example if variable $c is declared with the type tuple(r
as xs:double, i as xs:double), then the expression $c?j would be a static
error. (Note also that 1 to $c?i might give a static type error, because the
processor is able to infer a static type for $c?i)

However, a dynamic lookup in the tuple for a key that is not a known field
succeeds, and returns an empty sequence. This is to ensure that tuples are
substitutable for maps.

• If a variable or function argument declares its required type as a tuple type,
and a map is provided as the supplied value, then the map must strictly con-
form with the tuple type; no coercion is performed. For example if the
required type has a field declared with i as xs:double then the value of the
relevant entry in the map must actually be an xs:double; an xs:integer will
not be promoted.

2.2. Union Types
XSLT 3.0 and XPath 3.1 provide new opportunities for using union types. In par-
ticular, it is now possible to define a function that accepts an argument which is,
for example, either an xs:date or xs:dateTime. But this can only be achieved by
defining a new union type in a schema and importing the schema, which is a
rather cumbersome mechanism.

I therefore propose to allow anonymous union types to be defined inline: for
example <xsl:param name="arg" as="union(xs:date, xs:dateTime,
xs:time)"/>. The semantics are exactly the same as if the same union type were
defined in a schema.

The member types must be generalized atomic types (that is, atomic types or
simple unions of atomic types), which means that the union is itself a generalized
atomic type.

2.3. Node types
The element() and attribute() node types are extended to allow the full range
of wildcards permitted in path expressions: for example element(*:local),
attribute(xml:*). This is partly just for orthogonality (there is no reason why
node types and node tests should not be 100% aligned, and this is one of the few
differences), and partly because it is actually useful, for example, to declare that a
template rule returns elements in a particular namespace.

This means that patterns such as match="element(xyz:*, xs:date) become
possible, matching all elements of type xs:date in a particular namespace. The
default priorities for such patterns are established intuitively: the priority when
foo:* or *:bar is used is midway between the priorities for a full name like
foo:bar, and the generic wildcard *. Since element(*, T) has priority 0, while

A Proposal for XSLT 4.0

112

element(N, T) is 0.25, this means the priority for element(p:*, T) is set at
0.125.

2.4. Default namespace for types
The XPath static context defines a default namespace for elements and types. I
propose to change this to allow the default namespace for types to be different
from the default namespace for elements. Since relatively few users write
schema-aware code, 99% of all type names in a typical stylesheet are in the XML
schema namespace (for example xs:integer) and it makes sense to allow these to
be written without a namespace prefix. For XSLT I propose to extend the xpath-
default-namespace attribute so it can define both namespaces, space-separated.
(Note however that when constructor functions are used, as in
xs:integer(@status), it is the default namespace for functions that applies.)

2.5. Named item types
In a stylesheet that uses maps to represent complex data structures, and espe-
cially when these are defined using the new tuple() syntax, you quickly find
yourself using quite complex type definitions repeatedly on many different varia-
ble and function declarations. This has several disadvantages: it means that when
the definition changes, code has to be changed in many different places; it fails to
capture the semantic intent of the type; and it exposes details of the implementa-
tion that might be of no interest to the user.

I therefore propose to introduce the concept of named item types. These can
be declared in a stylesheet using top-level declarations:

<xsl:item-type name="complex" as="tuple(r as xs:double, i as
xs:double)"/>

and can be referenced wherever an item type may appear using the syntax
type(type-name): for example <xsl:param name="arg" as="type(complex)"/
>. Type names, like other names, are QNames, and if unprefixed are assumed to
be in no namespace. The usual rules for import precedence apply. Types may be
defined with visibility private or final; the definition cannot be overridden in
another package.

Named item types also allow recursive type definitions to be created, for
example:

<xsl:item-type name="binary-tree"
 as="tuple(left as type(binary-tree)?, value as item()*,
right as type(binary-tree)?)"/>

This means that item type names (like function names) are in scope within their
own definitions. This creates the possibility of defining types that cannot be

A Proposal for XSLT 4.0

113

instantiated; I suggest that we leave implementors to issue warnings in such
cases.

2.6. Type testing in patterns
With types becoming more expressive, and with increasing use of values other
than nodes in <xsl:apply-templates>, the syntax match=".[. instance of
ItemType]" to match items by their type becomes increasingly cumbersome. This
syntax also has the disadvantage that there is no "smart" calculation of default
priorities based on the type hierarchy. I therefore propose to introduce new syn-
tax for patterns designed for matching items other than nodes.
• type(T) matches an item of type T, where T is a named item type. The default

priority for such a pattern depends on the definition of T, and is the same as
that of the pattern equivalent to T.

• A pattern in the form atomic(EQName), followed optionally by predicates,
matches atomic values of a specified atomic type. For example,
atomic(xs:string)[matches(., '[A-Z]*')] matches all xs:string values
comprising Latin upper-case letters.

Note, this syntax is needed because a bare EQName used as a pattern matches an
element node with a given name. Semantically, atomic(Q) is equivalent to union(Q)
(a singleton union).

• Item types in the form tuple(...), map(...), array(...), function(...), or
union(...) match any item that is an instance of the specified item type.

In fact, for template rules that need to match JSON objects, a tuple type
that names a selection of the fields in the object without giving their types will
often be perfectly adequate: for example match="tuple(ssn, first,
middle, last, *)" is probably enough to ensure that the right rule fires.

The default priority for these patterns is defined later in the paper.
Any of these patterns may be followed by one or more predicates.

The effect of these changes is that for any ItemType, there is a corresponding
pattern with the same or similar syntax:
• For the item type item(), the corresponding pattern is .
• For an item type expressed as an EQName Q, the corresponding pattern is

atomic(Q)
• For an item type written as type(...), map(...), array(...),

function(...), tuple(...), or union(...), the item type can be used as a
pattern as is

• For an item type written as a KindTest (for example element(P) or
comment()), the item type can be used as a pattern as is (this is because every
KindTest is a NodeTest). There is one glitch here: as an item type, node()

A Proposal for XSLT 4.0

114

matches all nodes, but as a pattern, it does not match attributes, namespace
nodes, or document nodes. I therefore propose to introduce the syntax
node(*), which is defined to match any node (of any node kind) whether it is
used as a step in a path expression or as the first step in a pattern.

These extensions to pattern syntax are designed primarily to make it easier to
process the maps that result from parsing JSON using the recursive-descent tem-
plate matching paradigm. For example, if the JSON input contains:

{ "ssn": "ABC12357", "firstName": "Michael", "dateOfBirth": "1951-10-11"}
then this can be matched by a template rule with the match pattern

match="tuple(ssn as xs:string, dateOfBirth, *)[?dateOfBirth castable as
xs:date]"

A possible extension, which I have not fully explored, is to allow nested patterns
within a tuple pattern, rather than only allowing item types. For example, this
would allow the previous example to be written:

match="tuple(ssn as xs:string, dateOfBirth[. castable as xs:date], *)"
Indeed, a further extension might be to allow a predicate wherever an item type
is used, for example in the declaration of a variable or a function argument. While
this is powerful, it creates considerable complications because of the fact that
predicates can be context-sensitive

2.7. Function Conversion Rules
The so-called function conversion rules define how the supplied arguments to a
function call are converted (where necessary) to the required type defined in the
function signature. In XSLT (though not XQuery) the same rules are also used to
convert the supplied value of a variable to its required type.

The name "function conversion rules" is rather confusing because the thing
being converted is not necessarily a function, nor is the operation exclusively trig-
gered by a function call, so my first proposal is to rename them "coercion rules".
This is consistent with the way the term "function coercion" is already used in the
spec.

The coercion rules are pragmatic and somewhat arbitrary: they are a compro-
mise between the convenience to the programmer of not having to do manual
conversion of values to the required type, and the danger of the system doing the
wrong conversion if left to its own devices.

I propose to change the coercion rules so that where the required type is a
derived atomic type (for example xs:positiveInteger), and the supplied value
after atomization is an instance of the same primitive type (for example the
xs:integer value 17) then the value is automatically converted -- giving a
dynamic error, of course, if the conversion fails. Currently no-one uses the

A Proposal for XSLT 4.0

115

derived atomic types such as xs:positiveInteger in a function signature
because of the inconvenience that you then can't supply the literal integer 17 in a
function call. This change brings atomic values into line with the way that other
values such as maps work: if a function declares the required type of a function
argument as map(xs:string, xs:integer) then the caller can supply any map
as an argument, and the function calling mechanism will simply check that the
supplied map conforms with the constraints defined by the function for what
kind of map it will accept; there is no need for the caller to do anything special to
invoke a conversion.

(I would have preferred a more radical change, whereby atomic values are labelled only
with their primitive type, and not with a restricted type. So the expression 17 instance of
xs:positiveInteger would return true, which is probably what most users would
expect. However, I think this change would probably be too disruptive to existing applica-
tions.)

I also propose to make a change to the way function coercion works. Function
coercion applies when you supply a function F in a context where the required
type is another function type G. The current rule is that this works provided that F
accepts the arguments supplied in an actual call, and returns a value allowed by
the signature of G; it doesn't matter whether F is capable of accepting everything
that G accepts, so long as it accepts what is actually passed to it.

Currently function coercion fails if F and G have different arity. I propose to
allow F to have lower arity than G; additional arguments supplied to G are simply
dropped.

Consider how this might work for the higher-order function fn:filter, by
analogy with the way it works in Javascript. Currently fn:filter expects as its
second argument a function of type $f as function(item()) as xs:boolean.
With this change to function coercion, we can extend this so the declared type is
$f as function(item(), xs:integer) as xs:boolean. The extended version
allows the predicate to accept a second argument, which is the position of the
item in the sequence being filtered. But you can still supply a single-argument
function; it just won't be told about the position.

The purpose of this change is to allow backwards-compatible extensions to
higher-order functions; the information made available to the callback function
can be increased without invalidating existing code.

2.8. Static type-checking rules

Some early XQuery developers favoured the use of "pessimistic static type check-
ing", whereby a static type error is reported if any expression is not type-safe.
(This is perhaps most commonly seen today in the implementation of XQuery
offered with Microsoft's SQL Server database product.) More specifically, pessi-
mistic static type checking signals an error unless the required type subsumes the

A Proposal for XSLT 4.0

116

supplied type. Experience has shown that pessimistic static type is rather incon-
venient for most applications (especially as most applications are not schema-
aware). XSLT fortunately steered clear of this area.2

The limited ability to perform "optimistic static type checking", whereby a
static type error can be reported if the required type and the supplied type are
disjoint, has been found to give considerable usability benefits; it is sufficient to
detect a great many programming mistakes at compile time, provided that users
are diligent in declaring the required types of variables and parameters, but it
doesn't force the user to use verbose constructs (such as treat as) to enforce
compile-time type safety.

I propose some modest changes to allow more obvious errors to be reported
at compile time.

• First, I propose to allow a static type error to be reported in the case where the
supplied type of an expression can satisfy the required type only in the event
that its value is an empty sequence. For example, if the required type is
xs:integer*, and the expression is a call on xs:date(), then it is not cur-
rently permitted to report a static error, because a call on xs:date() can yield
an empty sequence, which would be a valid instance of the required type. In
practice this situation is invariably a programmer mistake, and processors
should be allowed to report it as such.

• Second, I propose introducing rules that allow certain path expressions (of the
form A/B) to report an error if it is statically known that the result can only be
an empty sequence. If the processor knows the node-kind of A, by means of
static type inferencing, then it can report an error if B uses an axis that is
always empty for that node kind: so @A/@B becomes a static error. (This error
is suprisingly common, though it's not usually quite so blatant. It tends to
happen when a template rule that only matches attributes does <xsl:copy-of
select="@*"/>. Of course, this particular example is harmless, so we should
reject it only if the stylesheet version is upped to 4.0).

This ability is particularly useful in conjunction with schema-awareness.
Users expect spelling mistakes in element names to be picked up by the com-
piler if the name used in the stylesheet is inconsistent with its spelling in the
schema. Currently the language rules allow only a warning in this case.

2I have used the terms optimistic and pessimistic type checking for many years, but I cannot find any
definitions in the literature. By pessimistic static type checking I mean what is often simply called static
or strict type checking: a static error occurs if the inferred type of an expression is not a subtype of the
type required for the context in which the expression is used. By contrast, I use optimistic static type
checking to mean that a static error occurs only if the inferred type and the required type are disjoint
(they have no values in common); in cases where the inferred type overlaps the required type, code is
generated to perform run-time type checking.

A Proposal for XSLT 4.0

117

• Third, an expression like function($x){. + 3} currently throws a dynamic
error (XPDY0002) because the context item is absent. A strict reading of the
XSLT specification suggests that the processor cannot report this as a compile
time error (it only becomes an error if the function is actually evaluated).
XQuery, it turns out, has fixed this (for named functions, though not for inline
functions): it says that the static error XPST0008 can be raised in this situation.
I propose changing XPDY0002 to be a type error, which means it can now be
statically reported if detected during compilation, not just within function
bodies, but in other contexts (such as <xsl:on-completion>) where there is
no context item defined.

3. Functions
XSLT is a functional language, and version 3.0 greatly increases the role of func-
tions by making them first-class objects and thus allowing higher-order functions.
When you start to make extensive use of this capability, however, you start to
encounter a few usability problems.

Firstly, the syntax for writing functions starts to become restrictive. You can
either write global named functions in XSLT syntax, or local anonymous func-
tions in XPath; neither syntax is particularly conducive to the very simple func-
tions that you sometimes want to use in calls on fn:filter() or fn:sort(). It is
also cumbersome to define a family of functions of different arity allowing some
arguments to be omitted. I therefore propose to introduce some new syntax for
writing functions.

3.1. Dot Functions
The syntax .{EXPR} is introduced as a shorthand for function($x as item())
as item()* {$x ! EXPR}. For example, this allows you to sort employees by last
name then first name using the function call sort(// employee, .{lastName,
firstName}) where you would currently have to write sort(// employee,
function($emp) { $emp/lastName, $emp/firstName }).

Exprience with other programming languages suggests that a more concise
syntax for inline functions greatly encourages their use; indeed, we can imagine
non-programmer users of XSLT mastering this syntax without actually under-
standing the concepts of higher-order functions.

3.2. Underscore Functions
In dot functions, we are limited to a single argument whose value is a single item
(because that's the way the context item works). For the more general case, we
introduce another notation: the underscore function. By way of an example, _{$1
+ $2} is a function that takes two arguments (without declaring their type, so

A Proposal for XSLT 4.0

118

there are no constraints), and returns the sum of their values. This means that a
function call such as for-each-pair($seq1, $seq2, function($a1, $a2) {$a1
+ $a2}) can now be written more concisely as for-each-pair($seq1, $seq2,
_{$1 + $2}).

The arity of such a function is inferred from the highest-numbered parameter
reference. Parameter references act like local variable references, but identify
parameters by position rather than by name. There can be multiple references to
the same parameter, and the function body doesn't need to refer to any parame-
ters except the last (so the arity can be inferred). Parameters go "out of scope" in
nested underscore functions.

The change to the function coercion rules means that if your function doesn't
need to use the last argument, it doesn't matter that your function now has the
wrong arity. For example, in a later section I propose an extension to the
<xsl:map> instruction that provides an on-duplicates callback, which takes two
values. To select the first duplicate, you can write <xsl:map on-
duplicates="_{$1}"/>; to select the second, you can write <xsl:map on-dupli-
cates="_{$2}"/>. Although the required type is a function with arity 2, you are
allowed to supply a function that ignores the second argument.

Nested anonymous functions are perhaps best avoided in the interests of
readability; but of course they are permitted. A numeric parameter reference such
as $1 is not directly available in the closure of a nested function, but it can be
bound to a conventional variable:

_{ let $x := $1, $g := _{$1 + $x} return $g(10) }(5)

3.3. Default Arguments

I propose to allow a single <xsl:function> declaration to define a family of func-
tions, having the same name but different arity, by allowing parameters to have a
default value. For example consider the declaration:

<xsl:function name="f:mangle" as="xs:integer">
 <xsl:param name="a" as="xs:string"/>
 <xsl:param name="options" as="map(*)" required="no" select="map{}"/>
 <xsl:sequence select="if ($options?upper) then upper-case($a) else
$a"/>
</xsl:function>

This declares two functions, f:mangle# 1 and f:mangle# 2, with arity 1 and 2
respectively, based on whether the second argument is supplied or defaulted.

A parameter is declared optional with the attribute required="no"; if the
attribute is optional, then its default value can be given with a select attribute. In
the absence of a select attribute, the default value of an optional parameter is the

A Proposal for XSLT 4.0

119

empty sequence. A parameter can only be optional if all subsequent arguments
are also optional.

The single <xsl:function declaration defines a set of functions having the
same name, with arities in the range M to N, where M is the number of
<xsl:param> elements with no default value, and N is the total number of
<xsl:param> elements. The construct is treated as equivalent to a set of separate
xsl:function declarations without optional parameters; for example, an overrid-
ing xsl:function declaration (one with higher import precedence, or one within
an xsl:override element) might override one of these functions but not the oth-
ers.

4. Conditionals
Conditional (if/then/else) processing can be done both in XPath and in XSLT. In
both cases, for such a commonly used construct, the syntax is a little cumber-
some. I believe that a few minor improvements can be made without difficulty
and will be welcomed by the user community.

4.1. The otherwise operator
A common idiom in XPath is to see constructs like (@discount, 0)[1] to mean:
take the value of the @discount attribute if present, or the default value 0 other-
wise.

There are two drawbacks with this construct: firsly, unless you've come across
it before, the meaning is far from obvious; and secondly, it only works if the first
value is a singleton, rather than an arbitrary sequence.

I propose the syntax @discount otherwise 0 as a more intuitive way of
expressing this. The expression returns the value of the first operand, unless it is
an empty sequence, in which case it returns the value of the second operand.

4.2. Adding @select to <xsl:when> and <xsl:otherwise>
Most XSLT instructions that allow a contained sequence constructor also allow a
select attribute as an alternative. The <xsl:when> and <xsl:otherwise> ele-
ments are notable exceptions, and I propose to remedy this. For example this
instruction:

<xsl:choose>
 <xsl:when test="@a=2">
 <xsl:sequence select="17"/>
 </xsl:when>
 <xsl:when test="@a=3">
 <xsl:sequence select="19"/>
 </xsl:when>

A Proposal for XSLT 4.0

120

 <xsl:otherwise>
 <xsl:sequence select="23"/>
 </xsl:otherwise>
</xsl:choose>

can be rewritten as:
<xsl:choose>
 <xsl:when test="@a=2" select="17"/>
 <xsl:when test="@a=3" select="19"/>
 <xsl:otherwise select="23"/>
</xsl:choose>

which makes it significantly more readable.

4.3. Adding @then and @else attributes to <xsl:if>
For the xsl:if instruction, rather than adding a select attribute, I propose to
add two attributes, then and else. If either attribute is present then the contained
sequence constructor must be empty. If one attribute is present and the other
absent, the other defaults to () (the empty sequence).

This enables a construct like:
<xsl:if test="@a='yes' then="0" else="1"/>
This is likely to be particularly useful for delivering function results, in place

of xsl:sequence; it will often enable a 2-way xsl:choose to be replaced with a 2-
way xsl:if.

Consider this example from the XSLT 3.0 specification:
<xsl:choose>
 <xsl:when test="system-property('xsl:version') = '1.0'">
 <xsl:value-of select="1 div 0"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="xs:double('INF')"/>
 </xsl:otherwise>
</xsl:choose>

which can (in all likelihood) be rewritten
<xsl:if test="system-property('xsl:version') = '1.0'"
 then="1 div 0"
 else="xs:double('INF')"/>

Of course, we could also use an XPath conditional here. But when the expressions
become a little longer, many users dislike using complex multi-line XPath expres-
sions (partly because some editors ruin the layout, whereas editors offer good
support for XML layout).

For another example, the function given earlier in this paper:

A Proposal for XSLT 4.0

121

<xsl:function name="f:mangle" as="xs:integer">
 <xsl:param name="a" as="xs:string"/>
 <xsl:param name="options" as="map(*)" select="map{}"/>
 <xsl:sequence select="if ($options?upper) then upper-case($a) else
$a"/>
</xsl:function>

can now be written:
<xsl:function name="f:mangle" as="xs:integer">
 <xsl:param name="a" as="xs:string"/>
 <xsl:param name="options" as="map(*)" select="map{}"/>
 <xsl:if test="$options?upper" then="upper-case($a)" else="$a"/>
</xsl:function>

4.4. xsl:message/@test attribute

Users have become familiar with the ability to "compile out" instructions using a
static use-when expression, for example

<xsl:message use-when="$debug"/>
Currently this only works if $debug is a static variable; if it becomes necessary to
use a non-static variable instead, the construct has to change to the much more
cumbersome

<xsl:if test="$debug">
 <xsl:message/>
</xsl:if>

I propose that <xsl:message> should have a test attribute, bringing it into line
with <xsl:assert>.

Verbose wrapping of instructions in <xsl:if> is also seen when constructing
output elements, for example one might see a long sequence of instructions of the
form:

<xsl:if test="in:maturity-date">
 <out:maturityDate>{maturity-date}</out:maturityDate>
</xsl:if>

I considered proposing that all instructions should have a test or when attribute,
defining a condition which allows the instruction to be skipped. Having experi-
mented with such a capability, however, I'm not convinced it improves the lan-
guage.

4.5. Equality Operators
There are in effect four different equality operators for comparing atomic values,
all with slightly different rules:

A Proposal for XSLT 4.0

122

• The "=" operator is implicitly existential, and converts untyped atomic values
to the type of the other operand: this leads to curiosities such as the fact that A
= B being different from not(A = B), and to non-transitivity (if X is
xs:untypedAtomic, then X = '4' and X = 4 can both be true, but 4 = '4'
gives a type error).

• The "eq" operator eliminates the existential behaviour, and converts untyped
atomic values to strings. This avoids some of the worst peculiarities of the "="
operator, but the type promotion rules mean that it edge cases, it is still not
transitive. The result of the operator is context-sensitive; for example the
result of comparing two xs:dateTime values can depend on the implicit time-
zone.

The comparison performed by xsl:sort and xsl:merge is based on the
"eq" and "le" operators, but NaN is considered equal to itself. The lack of tran-
sitivity with edge cases involving mixed numeric types creates a potential
security weakness in that it might be possible to construct an artificial input
sequence to xsl:sort that causes the instruction not to terminate.

• The operator used by the deep-equal() function, and also (by reference) by
distinct-values(), index-of(), fn:sort(), and <xsl:for-each-group>,
differs from "eq" primarily in that it returns false rather than throwing an
error when comparing unrelated types; it also compares NaN as equal to itself.
Because it handles conversion among numeric types in the same way as "eq",
it is still non-transitive in edge cases, which is particularly troublesome when
the operator is used for sorting or grouping. Like "eq", the result is context-
sensitive.

• The "same key" operator used implicitly for comparing keys in maps (for
example in map:contains()) is designed to be error-free, context-free, and
transitive. So it always returns false rather than throwing an error; the result is
never context-sensitive; and it is always transitive.

It's difficult to sort all of this out while retaining an adequate level of backwards
compatibility, but I propose that:

• Type promotion when comparing numeric types should be changed to use the
rules of the "same key" operator throughout. In effect this means that all
numeric comparisons are done by converting both operands to infinite-preci-
sion xs:decimal (with special rules for infinity and NaN). This change makes
"eq" transitive. Although this creates a minor backwards incompatibility in
edge cases, I believe this change can be justified on security grounds; the cur-
rent rules mean there is a risk that sorting will not terminate for some input
sequences. These rules extend to other functions that compare numeric values,
for example min() and max(), but the promotion rules for arithmetic are

A Proposal for XSLT 4.0

123

unchanged: adding an xs:double and an xs:decimal still delivers an xs:dou-
ble.

• All four operators should handle timezones in the way that the "same key"
operator does: that is, a date/time value with a timezone is not considered
comparable to one without. This change makes the result of a comparison
independent of the dynamic context in which it is invoked, which enables
optimizations that are disallowed in 3.0 simply because of the remote possibil-
ity that the input data will contain a mix of timezoned and untimezoned
dates/times.

This change is perhaps more significant from the perspective of backwards
compatibility, and perhaps there needs to be a 3.0-compatible mode of execu-
tion that retains the current behaviour.

5. Template Rules and Modes
Template rules and modes are at the heart of the XSLT processing model. The
xsl:mode declaration in XSLT 3.0 usefully provides a central place to define
options and properties for template rule processing. Packages also help to create
better modularity. But anyone who has to debug a large complex stylesheet with
20 or more modules knows what a nightmare it can be to find out where a partic-
ular bit of logic is located, so further improvements are possible.

5.1. Enclosed Modes

I propose to allow template rules to be defined by using xsl:template as a child
of xsl:mode. An xsl:mode declaration that contains template rules is referred to
as an enclosed mode. Such template rules must have no mode attribute (it defaults
to the name of the containing mode). They must also have no name attribute. If a
mode is an enclosed mode, then all template rules for the mode must appear
within the xsl:mode declaration, other than template rules declared using
xsl:override in a different package. Specifying mode="#all" on a template rule
outside the enclosed mode is interpreted as meaning "all modes other than
enclosed modes". The default mode for xsl:apply-templates instructions within
the enclosed mode is the enclosing mode itself.

This feature is designed to make stylesheets more readable: it becomes easier
to get an overview of what a mode does, and it becomes easier to find the tem-
plate rules associated with a mode. It makes it easier to copy-and-paste a mode
from one stylesheet to another. It means that to find the rules for a mode, there
are fewer places you need to look: the rule will either be within the mode itself, or
(if the mode is not declared final) within an xsl:override element in a using
package.

A Proposal for XSLT 4.0

124

To further encourage the use of very simple template rules, I propose allowing
xsl:template to have a select attribute in place of a sequence constructor. This
allows for example:

<xsl:mode name="border-width" as="xs:integer">
<xsl:template match="aside" select="1"/>
<xsl:template match="footnote" select="2"/>
<xsl:template match="*" select="0"/>
</xsl:mode>

A template rule with a select attribute must not contain any xsl:param or
xsl:context-item declarations.

5.2. Typed modes
It is often the case that all template rules in a mode return the same type of value,
for example nodes, strings, booleans, or maps. This is almost a necessity, since
anyone writing an xsl:apply-templates instruction needs to have some idea of
what will be returned.

I propose therefore that the xsl:mode declaration should acquire an as attrib-
ute, whose value is a sequence type. If present, this acts as the default for the as
attribute in xsl:template rules using that mode. Individual template rules may
have an as attribute that declares a more precise type, but only if it is a true sub-
type.

The presence of this attribute enables processors to infer a static type for the
result of the xsl:apply-templates instruction.

In the interests of forcing good practice, the xsl:mode/ @as attribute is
required in the case of an enclosed mode.

5.3. Default Namespace for Elements
Anyone who follows internet programming forums such as StackOverflow will
know that the number one beginner mistake with XSLT is to assume that an
unprefixed name, used in a path expression or match pattern, will match an
unprefixed element name in the source document. In the presence of a default
namespace declaration, of course, this is not the case.

What's particularly annoying about this problem is that the consequences bear
no obvious relationship to the nature of the mistake. It generally means that tem-
plate rules don't fire, and path expressions don't select anything. Those are tough
symptoms for beginners to debug, when they have no idea where to start look-
ing.

It's worth noting that only a minority of documents actually use multiple
namespaces, and in those that do, there is rarely any ambiguity in the sets of local
names used. It's therefore unsurprising that beginners imagine that namespaces
are something they can learn about later if they need to.

A Proposal for XSLT 4.0

125

The xpath-default-namespace attribute in XSLT 2.0 was an attempt to tackle
this problem; but unfortunately it only solved the problem if you already knew
that the problem existed.

I want to propose a more radical solution:

• Unprefixed element names in path expressions and match patterns should
match by local name alone, regardless of namespace; that is, NNNN is interpre-
ted as *:NNNN.

This is a radical departure and for backwards compatibility, it must be pos-
sible to retain the status quo. My guess is that the vast majority of stylesheets
will still work perfectly well with this change.

• The syntax :local (with a leading colon) becomes available to force a no-
namespace match, regardless of default namespace.

• The option to match by local name can be explicitly enabled (for any region of
the stylesheet) by specifying xpath-default-namespace="##any", while the
option for unprefixed names to match no-namespace names can be selected by
setting the attribute to either a zero-length string (as in XSLT 3.0) or, for
emphasis, to "##local" (a notation borrowed from XSD).

• The "default default" for xpath-default-namespace becomes implementa-
tion-defined, with a requirement that it be configurable; implementors can
choose how to configure it, and what the default should be. (This includes the
option to use the default namespace declared in the source document, if
known).

This gives implementors the option to provide beginners with an interface in
which unprefixed element names match the way that beginners expect: by local
name only. Users who understand namespaces can then switch to the current
behaviour if they wish, or can qualify all names (using the new syntax :name for
no-namespace names if necessary), to make sure that the problem does not arise.

This proposal is also motivated by the challenges posed by the way namespa-
ces are handled in HTML5. The HTML5 specification defines a variation on the
XPath 1.0 specification that changes the way element names in path expressions
match. The proposal to make unprefixed element names match (by default) by
local name alone removes the need for HTML5 to get special treatment.

6. Processing Maps and Arrays
The introduction of maps and arrays into the data model has enabled more com-
plex applications to be written in XSLT, as well as allowing JSON to be processed
alongside XML. But experience with these new features has revealed some of
their limitations, and a second round of features is opportune.

A Proposal for XSLT 4.0

126

6.1. Array construction
The XSLT instruction xsl:array is added to construct an array.

The tricky part is how to construct the array members (in general, a sequence
of sequences). The same problem exists for the square and curly array construc-
tors in XPath, and I propose to solve the problem in the same way.

First I propose a new function
array:of((function() as item()*)*) => array(*)

which takes a sequence of zero-arity functions as its input, and evaluates each of
those functions to return one member of the array. For example

array:of((_{1 to 5}, _{7 to 10}))
returns the array [(1,2,3,4,5), (7,8,9,10)]

(The underscore syntax for writing simple functions – in this case, zero-arity
functions – was described earlier in the paper).

For a more complex example,
array:of(for $x in 1 to 5 return _{1 to $x})

returns the array [(1), (1,2), (1,2,3), (1,2,3,4), (1,2,3,4,5)].
Now I propose an instruction xsl:array that accepts either a select attribute

or a contained sequence constructor, and processes the resulting sequence in the
same way as the array:of() function, with one addition: any item in the result
that is not a zero-arity function is first wrapped in a zero-arity function. For
example:

<xsl:array select="1 to 5"/>
returns the array [1,2,3,4,5]; while

<xsl:array>
 <a/>

 <c/>
</xsl:array>

returns the array [<a/>, , <c/>], and
<xsl:array select="1, 2, 3, _{}, ${4,5,6}"/>

returns the array [1, 2, 3, (), (4,5,6)]

6.2. Map construction
The <xsl:map> instruction acquires an attribute on-duplicates. The value of the
attribute is an XPath expression that evaluates to a function; the function is called
when duplicate map entries are encountered. For example, on-
duplicates="_{$1}" selects the first duplicate, on-duplicates="_{$2}" selects

A Proposal for XSLT 4.0

127

the last, on-duplicates="_{$1, $2}" combines the duplicates into a single
sequence, and on-duplicates="_{string-join(($1, $2), '|')}" concatenates
the values as strings with a separator.

6.3. The Lookup Operator ("?")
In 3.0, the right-hand side of the lookup operator (in both its unary and binary
versions) is restricted to be an NCName, an integer, the token "*", or a parenthe-
sized expression.

To provide slightly better orthogonality, I propose relaxing this by allowing (a)
a string literal, and (b) a variable reference. In both cases the semantics are equiv-
alent to enclosing the value in parentheses: for example $array?$i is equivalent
to $array?($i) (which can also be written $array($i)), and $map?"New York" is
equivalent to $map?("New York") (which can also be written $map("New York")).

6.4. Iterating over array members
The lookup operator $array?* allows an array to be converted to a sequence, and
often this is an adequate way of iterating over the members of the array. But
where the members of the array are themselves sequences, this loses information:
the result of array{(1,2,3), (4,5,6)}?* is (1,2,3,4,5,6).

To make processing such arrays easier, I introduce a new clause for FLWOR
expressions: for member $var in array-expression which binds $var to each
member of the array returned by the array-expression, in turn.

For example:
for member $var in array{(1,2,3), (4,5,6)} return sum($var)

returns (6, 15)
As with for and let, I allow for member as a free-standing expression in

XPath.
Currently the only way to achieve such processing is with higher-order func-

tions: array:for-each($array, sum#1).
We can also consider an XSLT instruction <xsl:for-each-member> but the

question becomes, how should the current member be referenced? I'm no great
enthusiast for yet more current-XXX() functions, but stylistic consistency is
important, and this certainly points to the syntax:

<xsl:for-each-member select="array{(1,2,3), (4,5,6)}">
 <total>{sum(current-member())}</total>
</xsl:for-each-member>

6.5. Rule-based recursive descent with maps and arrays
The traditional XSLT processing model for transforming node trees relies heavily
on the interaction of the xsl:apply-templates instruction and match patterns.

A Proposal for XSLT 4.0

128

The model doesn't work at all well for maps and arrays, for a number of reasons.
The reasons include:
• We don't have convenient syntax for matching maps and arrays in patterns; all

we have is general predicates, which are cumbersome to use.
• Because there is no parent or ancestor axis available when processing maps

and arrays, a template rule for processing part of a complex structure cannot
get access to information from higher in the structure unless it is passed down
in the form of parameters. In addition, there is no mechanism for defining a
template rule to match a map or array in a way that is sensitive to the context
in which it appears.

• There is no built-in template corresponding to the shallow-copy template that
works effectively for maps and arrays, allowing the stylesheet author to define
rules only for the parts of the structure that need changing

• Template rules always match items. But with a map, the obvious first level of
decomposition is not into items, but into entries (key-value pairs). Similarly,
with arrays, the first level of decomposition is into array members, which are
in general sequences rather than single items.

The following sections address these issues in turn.

6.5.1. Type-based pattern matching

In 3.0 it is possible to use a pattern of the form match=".[. instance of T]" to
match items by their type. This syntax is clumsy, to say the least. I therefore pro-
pose some new kinds of patterns with syntax closely aligned with item type syn-
tax. The following new kinds of pattern are introduced (by example):
• atomic(xs:date)

Matches an atomic value of type xs:date.
• union(xs:date, xs:dateTime, xs:time)

Matches an atomic value belonging to a union type.
• map(xs:string, element())

Matches a map belonging to a map type.
• tuple(first, middle, last)

Matches a map belonging to a tuple type.
• array(xs:integer)

Matches an array whose members are of a given type
• type(T)

Matches an an item belonging to a named type (declared using xsl:item-
type).

A Proposal for XSLT 4.0

129

In each case the item type can be followed by predicates. For example, strings
starting with "#" can be matched using the pattern atomic(xs:string)[starts-
with(., '#')], while tuples representing female employees might be matched
with the pattern tuple(ssn, lastName, firstName, *)[?gender='F']

The following rules are proposed for the default priority of these patterns (in
the absence of predicates):

• For patterns corresponding to the generic type function(*) the priority is
-0.75; for map(*) and array(*) it is -0.5.

• For atomic patterns such as atomic(xs:string), the priority is 1 - 0.5N, where
N is the depth of the type in the type hierarchy. For example, xs:decimal is
0.5, xs:integer is 0.75, xs:long is 0.875. In all cases the resulting priority is
between zero and one.

atomic(xs:anyAtomicType) gets a priority of 0.
The rule extends to user-defined atomic types.
The rule ensures that if S is a subtype of T, then the priority of S is greater

than the priority of T.

• For union patterns such as union(xs:integer, xs:date), the priority is the
product of the priorities of the atomic member types. So for this example, the
priority is 0.375.

Again, this rule ensures that priorities reflect subtype relationships: for
example union(xs:integer, xs:date) has a lower priority than
atomic(xs:integer) but a higher priority than union(xs:decimal,
xs:date).

The rule does not ensure, however, that overlapping types have equal pri-
ority; for example when matching an integer, the pattern union(xs:integer,
xs:date, xs:time) will be chosen in preference to union(xs:integer,
xs:double). The rules will not, therefore, be a reliable way of resolving
ambiguous matches.

• For a specific array type array(M), the priority is the normalized priority of
the item type of M (the cardinality of M is ignored). Normalized priority is
calculated as follows: if the priority is P, then the normalized priority is (P
+1)/2. That is, base priorities in the range -1 to +1 are compressed into the
range 0 to +1.

• For a specific map type map(K, V), the priority is the product of the normal-
ized priorities of K and the item type of V (the cardinality of V is ignored).

• For a specific function type function(A1, A2, ...) as V, the priority is the
product of the normalized priorities of the item types of the arguments. The
cardinalities of the argument types, and the result type, are ignored.

A Proposal for XSLT 4.0

130

Enterprising users may choose to exploit the fact that
function(xs:integer) has a higher priority than function(xs:decimal) as
a way of implementing polymorphic function despatch.

• For a non-extensible tuple type tuple(A as t1, B as t2, ...), the priority
the product of the normalized priorities of the item types of the defined fields.

• For an extensible tuple type tuple(A as t1, B as t2, ..., *), the priority
is -0.5 plus (0.5 times the priority of the corresponding non-extensible tuple
type).

This rule has the effect that an extensible tuple type is never considered for
a match until all non-extensible tuple types have been eliminated from consid-
eration.

Like the existing rules for the default priority of node patterns, these rules are a
little rough-and-ready, and will not always give the result that is intuitively cor-
rect. However, they follow the general principle that selective patterns have a
higher priority than non-selective patterns, so it's likely that they will resolve
most cases in the way that causes least surprise. When things get complex, users
can always define explicit priorities.

The existing rules for node patterns often ensure that overlapping rules have
the same priority, thus leading to warnings or errors when more than one pattern
matches. That remains true for the new rules when predicates are used, but in the
absence of predicates, there are many cases where overlapping patterns do not
have the same priority.

The most important use case for the new kinds of pattern is to match maps
(objects) when processing JSON input, and in this case using tuples that name the
distinguishing fields/properties of each object should achieve the required effect,
regardless whether extensible or inextensible tuple types are used.

6.5.2. Decomposing Maps

I propose a function map:entries($map) which returns a sequence of maps, one
per key-value pair in the original map. The map representing each entry contains
the following fields:
• key: the key (an atomic value)
• value: the associated value (any sequence)
• container: the map from which this entry was extracted.
That is, the result matches the type tuple(key as xs:anyAtomicType, value as
item()*, container as map(*)). To process a map using recursive-descent
template rule processing, it is possible to use an instruction of the form
<xsl:apply-templates select="map:entries($map)"/ >, and then to process
each entry in the map using a separate template rule. The presence of the

A Proposal for XSLT 4.0

131

container field compensates for the absence of an ancestor axis: it gives access to
entries in the containing map other than the one being processed. For example:

<xsl:template match="tuple(key, value)[?key='ssn']">
 <xsl:if test="?container?location='London'" then="'UK'||?value"
else="'US'||?value"/>
</xsl:template>

This makes the immediate context of a map entry available to the called template
rule. For more distant context, it is generally necessary to pass the information
explicitly, typically using tunnel parameters. (Navigating further back using mul-
tiple container steps is feasible in theory, but clumsy in practice.)

An alternative to use of tunnel parameters is to add information to the map
being processed: instead of <xsl:apply-templates
select="map:entries($map)"/ >, you can write <xsl:apply-templates
select="$map:entries($map) ! map:put(., 'country-name': $country)"/>,
and the extra data will then be available in the called templates as ?country-
name.

7. New Functions

In this section, I propose various new or enhanced functions to add to the core
function library, based on practical experience. (Other new functions, such as
array-of(), have been proposed earlier in the paper).

7.1. fn:item-at
The function fn:item-at($s, $i) returns the same result as
fn:subsequence($s, $i, 1). It is useful in cases where the positional filter
expression $s[EXPR] is unsuitable because the subscript expression EXPR is focus-
dependent.

7.2. fn:stack-trace
I propose a new function fn:stack-trace() to return a string containing diag-
nostic information about the current execution state. The detailed content and for-
mat of the returned string is implementation-dependent.

I also propose a standard variable $err:stack-trace available within
xsl:catch to contain similar information about the execution state at the point
where a dynamic error occurred.

A Proposal for XSLT 4.0

132

7.3. fn:deep-equal with options

An extra argument is added to fn:deep-equal; it is a map following the "option
parameter conventions". The options control how the comparison of the two
operands is performed. Options should include:
• Ignore whitespace text nodes
• Normalize whitespace in text and attribute nodes
• Treat comments as significant
• Treat processing instructions as significant
• Treat in-scope namespace bindings as significant
• Treat namespace prefixes as significant
• Treat type annotations as signficant
• Treat is-ID, is-IDREF and nillable properties as signficant
• Treat all nodes as untyped
• Use the "same key" comparison algorithm for atomic values (as used for

maps), rather than the "eq" algorithm
• Ignore order of sibling elements

7.4. fn:differences()
A new function, like fn:deep-equal(), except that rather than returning a true or
false result, it returns a list of differences between the two input sequences. If the
result is an empty sequence, the inputs are deep-equal; if not, the result contains a
sequence of maps giving information about the differences. The map contains ref-
erences to nodes within the tree that are found to be different, and a code indicat-
ing the nature of the difference, plus a narrative explanation. The specification
will leave the exact details implementation-defined, but standardised in enough
detail to allow applications to generate diagnostics.

For example, fn:differences(,) might return
map{0: $1/ @x, 1: $2/ @x, 'code': 'different-string-value',
'explanation': "The string value of the @x attribute differs ('3' vs
'4')"}

The values of entries 0 and 1 here are references to the attribute nodes in the
supplied input sequences.

7.5. fn:index-where($input, $predicate)
Returns a sequence of integers (monotonically ascending) giving the positions in
the the input sequence where the predicate function returns true.

A Proposal for XSLT 4.0

133

Example: subsequence($in, 1, index-where($in, .{exists(self::h1)})
returns the subsequence of the input up to and including the first h1 element.

Equivalent to
(1 to count($input)) [$predicate(subsequence($input, ., 1)]

7.6. fn:items-before(), fn:items-until(), fn:items-from(),
fn:items-after()
These new higher-order functions all take two arguments: an input sequence, and
a predicate that can be applied to items in the sequence to return a boolean.

If N is the index of the first item in the input sequence that matches the predi-
cate, then:

• fn:items-before() returns items with position() lt N

• fn:items-until() returns items with position() le N

• fn:items-from() returns items with position() ge N

• fn:items-after() returns items with position() gt N

7.7. map:index($input, $key)
Returns a map in which the items in $input are indexed according to the atom-
ized value of the $key function. For example map:index(// employee, .
{@location}) returns a map $M such that $M?London will return all employees
having @location='London'.

The $key function may return a sequence of values in which case the corre-
sponding item from the input will appear in multiple entries in the index.

7.8. map:replace($map, $key, $action)
If the map $map contains an entry for $key, the function calls $action supplying
the existing value associated with that key, and returns a new map in which the
value for the key is replaced with the result of the $action function.

If the map contains no entry for the $key, calls $action supplying an empty
sequence, and returns a new map containing all existing entries plus a new entry
for that key, associated with the value returned by the $action function.

For example, map:replace($map, 'counter', _{($1 otherwise 0) + 1})
sets the value of the counter entry in the map to the previous value plus 1, or to 1
if there is no existing value (and returns the new map).

A Proposal for XSLT 4.0

134

7.9. fn:highest() and fn:lowest()
Currently given as example user-written functions in the 3.1 specification, these
could usefully become part of the core library. For example, highest(// p,
string-length#1) returns the longest paragraph in the document.

7.10. fn:replace-with()
The new function fn:replace-with($in, $regex, $callback, [$flags]) is
similar to fn:replace(), but it computes the replacement string using a callback
function. For example, replace-with($in, '[0-9]+', .{string(number()
+1)}) adds one to any number appearing within the supplied string: "Chapter
12" becomes "Chapter 13".

7.11. fn:characters()
Splits a string into a sequence of single-character strings. Avoids the clumsiness
of string-to-codepoints(x)!codepoints-to-string().

7.12. fn:is-NaN()
Returns true if and only if the argument is the xs:float or xs:double value NaN.

7.13. Node construction functions
Once you start using higher-order functions extensively, you discover the prob-
lem that in order for a user-written function to create nodes, your code has to be
written in XSLT rather than in XPath. This is restrictive, because it means for
example that the logic cannot be included in static expressions, nor in expressions
evaluated using xsl:evaluate (I've seen people using fn:parse-xml() to get
around this restriction, for example fn:parse-xml("<foo/ >") to create an ele-
ment node named foo). A set of simple functions for constructing new nodes
would be very convenient. Specifically:
• fn:new-element(QName, content) – constructs a new element node with a

given name; $content is a sequence of nodes used to form the content of the
element, following the rules for constructing complex content.

• fn:new-attribute(QName, string) – constructs a new attribute node, simi-
larly

• fn:new-text(string) - constructs a new text node
• fn:new-comment(string) - constructs a new comment node
• fn:new-processing-instruction(string, string) - constructs a new pro-

cessing instruction node

A Proposal for XSLT 4.0

135

• fn:new-document(content) - constructs a new document node node

• fn:new-namespace(content) - constructs a new namespace node

Despite their names, these functions are defined to be non-deterministic with respect
to node identity: if called twice with the same arguments, it is system-dependent
whether or not you get the same node each time, or two different nodes. In prac-
tice, very few applications are likely to care about the difference, and leaving the
system to decide leaves the door open for optimizations such as loop-lifting.

Here's an example to merge the attributes on two sequences of elements,
taken pairwise:

<out>
 <xsl:sequence select="for-each-pair($seq1, $seq2,
 _{new-element(node-name($1),
($1/@*, $2/@*))})"/>
</out>

The functional approach to node construction is useful when elements are created
conditionally. Consider this example from the XSLT 3.0 specification:

<xsl:for-each-group select="node()"
 group-adjacent="self::ul or self::ol">
 <xsl:choose>
 <xsl:when test="current-grouping-key()">
 <xsl:copy-of select="current-group()"/>
 </xsl:when>
 <xsl:otherwise>
 <p>
 <xsl:copy-of select="current-group()"/>
 </p>
 </xsl:otherwise>
 </xsl:choose>
</xsl:for-each-group>

This can now be written:

<xsl:for-each-group select="node()"
 group-adjacent="self::ul or self::ol">
 <xsl:if test="current-grouping-key()"
 then="current-group()"
 else="new-element(QName("", "p"), current-group())"/>
</xsl:for-each-group>

References
[1] Michael Kay. Transforming JSON using XSLT 3.0. Presented at XML Prague,

2016. Available at http://archive.xmlprague.cz/2016/files/

A Proposal for XSLT 4.0

136

http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf

xmlprague-2016-proceedings.pdf and at http://www.saxonica.com/
papers/xmlprague-2016mhk.pdf

[2] Michael Kay. An XSD 1.1 Schema Validator Written in XSLT 3.0. Presented at
Markup UK, 2018. Available at http://markupuk.org/2018/Markup-
UK-2018-proceedings.pdf and at http://www.saxonica.com/papers/
markupuk-2018mhk.pdf

[3] Michael Kay, John Lumley. An XSLT compiler written in XSLT: can it perform?.
Presented at XML Prague, 2019. Available at http://archive.xmlprague.cz/
2019/files/xmlprague-2019-proceedings.pdf and at http://
www.saxonica.com/papers/xmlprague-2019mhk.pdf

[4] John Lumley, Debbie Lockett and Michael Kay. Compiling XSLT3, in the
browser, in itself. Presented at Balisage: The Markup Conference 2017,
Washington, DC, August 1-4, 2017. In Proceedings of Balisage: The Markup
Conference 2017. Balisage Series on Markup Technologies, vol. 19 (2017).
Available at https://doi.org/10.4242/BalisageVol19.Lumley01

[5] XSL Transformations (XSLT) Version 3.0. W3C Recommendation, 8 June 2017.
Ed. Michael Kay, Saxonica. http://www.w3.org/TR/xslt-30

A Proposal for XSLT 4.0

137

http://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf
http://www.saxonica.com/papers/xmlprague-2016mhk.pdf
http://www.saxonica.com/papers/xmlprague-2016mhk.pdf
http://markupuk.org/2018/Markup-UK-2018-proceedings.pdf
http://markupuk.org/2018/Markup-UK-2018-proceedings.pdf
http://www.saxonica.com/papers/markupuk-2018mhk.pdf
http://www.saxonica.com/papers/markupuk-2018mhk.pdf
http://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
http://archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf
http://www.saxonica.com/papers/xmlprague-2019mhk.pdf
http://www.saxonica.com/papers/xmlprague-2019mhk.pdf
https://doi.org/10.4242/BalisageVol19.Lumley01
http://www.w3.org/TR/xslt-30

138

(Re)presentation in XForms
Steven Pemberton
CWI, Amsterdam

<steven.pemberton@cwi.nl>
Alain Couthures

AgenceXML, France

Abstract

XForms [6][7] is an XML-based declarative programming language.
XForms programs have two parts: the form or model, contains descriptions
of the data used, and constraints and relationships between the values that
are automatically checked and kept up to date by the system; and the con-
tent, which displays data to the user, and allows interaction with values.

Content is presented to the user with abstract controls, which bind to
values in the model, reflecting properties of the values, and in general allow-
ing interaction with the values in various ways. Controls are unusual in
being declarative, describing what they do, but not how they should be rep-
resented, nor precisely how they should achieve what is required of them.
The abstract controls are concretised by the implementation when the
XForm application is presented to the user, taking into account modality,
features of the client device, and instructions from style sheets.

This has a number of advantages: flexibility, since the same control can
have different representations depending on need and modality, device inde-
pendence, and accessibility.

This paper discusses how XForms content presentation works, and the
requirements for controls, discusses how one implementation, XSLTForms,
implements content presentation, and the use of CSS styling to meet the
requirements of controls, and future improvements in both.

Keywords: XML, XForms, presentation, CSS, styling, skinning

1. XForms
XForms is a declarative markup for defining applications. It is a W3C standard,
and in worldwide use, for instance by the Dutch Weather Service, KNMI, many
Dutch and UK government websites, the BBC, the US Department of Motor Vehi-
cles, the British National Health Service, and many others. Largely thanks to its
declarative nature, experience has shown that you can produce applications in

139

much less time than with traditional procedural methods, typically a tenth of the
time [5].

2. Principles
XForms programs are divided into two parts: the form or model, which contains
the data, and describes the properties of the data, the types, constraints, and rela-
tionships with other values, and the content, which displays values from the
model, and allows interaction with those values. This can be compared with how
HTML separates styling from content, or indeed how a recipe first lists its ingre-
dients, before telling you what to do with them.

The model consists of any number of instances, collections of data that can
either be loaded from external data:

<instance src="data.xml"/>
or can contain inline data:

<instance>
 <payment xmlns="">
 <amount/>
 <paymenttype/>
 <creditcard/>
 <address>
 <name/>
 <street1/>
 <street2/>
 <city/>
 <state/>
 <postcode/>
 <country/>
 </address>
 </payment>
</instance>

Properties can then be assigned to data values using bind elements. Properties can
be:

types (which can also be assigned with schemas):
<bind ref="amount" type="decimal"/>

relevance conditions:
<bind ref="creditcard" relevant="../paymenttype = 'cc'"/>

required/optional conditions:
<bind ref="postcode" required="true()"/>
<bind ref="state" required="../country = 'USA'/>

(Re)presentation in XForms

140

read-only conditions:
<bind ref="ordernumber" readonly="true()"/>

constraints on a value:
<bind ref="age" constraint=". > 17 and . < 65"/>
<bind ref=creditcard" constraint="is-card-number(.)"/>

or calculations:
<bind ref="total" calculate="sum(instance('order')/item/price)"/>

XForms controls are used in the content to display and allow interaction with val-
ues, such as output:

<output ref="amount" label="Amount to pay"/>
input:
<input ref="creditcard" label="Credit card number"/>

or selecting a value:
<select1 ref="paymenttype" label="How will you pay?">
 <item label="Cash on delivery">cod</item>
 <item label="Credit card">cc</item>
 <item label="By bank">bank</item>
</select1>

XForms controls bind to values in instances, and are unusual in that in contrast
with comparable systems, they are not visually oriented, but specify their intent:
what they do and not how. Visual requirements are left to styling.

This has an important effect: the controls are as a result device- and modality-
independent, and accessible, since an implementation has a lot of freedom in how
they can be represented. The controls are an abstract representation of what they
have to achieve, so that the same control can have different representations
according to need.

3. The effect of data properties on presentation of controls
Since implementations have a degree of freedom in how they represent controls,
they can take the properties of the values into account in deciding how to do it.

The major effect is based on relevance, and demanded by the language: if a
value is not relevant, then the control it is bound to is not displayed. So for
instance, if the buyer is not paying by credit card, then the control for input of the
credit-card number

<input ref="creditcard" label="Credit card number"/>
will not be displayed. Note that most XForms data properties depend on a boo-
lean expression, and so the property can change accordingly at run time.

(Re)presentation in XForms

141

The display of values that are not even present in the data, which can be seen
as a sort of super-nonrelevance, is similar: controls that are bound to values that
are not present are also not displayed. This is in particular useful for data coming
from external sources, where certain fields may be optional in the schema. Note
that a value may later become available, for instance as a result of insertions, so
that the control has nevertheless to be ready to accept a value.

Another property of importance is type, where the implementation may adapt
the input control to the type of data that it represents. The classic example of this
is a control bound to a value of type date, which allows the implementation to
pop up a date picker rather than requiring the user to type in a complete date.
Another classic example is a control bound to a value of type boolean, allowing the
control to be represented as a check box.

The remaining properties, while not affecting the form of the control, affect
other styling aspects.

If a control is bound to a value that is required, then it gives the implementa-
tion the opportunity to indicate that fact to the user is a consistent manner, for
instance by putting a small red asterisk next to the label, or colouring the back-
ground red, or both.

If a control is bound to a value that is readonly, then the control will look simi-
lar, but should be represented in a way that makes it clear to the user that the
value is not changeable.

The final property of interest here is general validity, both type validity as well
as adherence to a constraint property. If the value is non-valid, the implementation
can display the control in such a way as to make that clear. Additionally, all con-
trols can have an alert message associated with them, that the implementation
displays when the value is invalid:

<input ref="creditcard" label="Credit card number"
 alert="Not a valid credit card number"/>

4. Implementation approaches
XForms was deliberately designed to allow different implementation strategies.
For instance:
• Native: The XForm is directly served to a client that processes it directly;
• Server-side: The server, possibly after inspecting what the client can accept,

transforms or compiles the XForm into something that the client can deal with
natively; the client may have to communicate with the server during process-
ing in order to achieve some of the functionality;

• Hybrid: some combination of the above.
As an example, one widely used implementation, XSLTForms [9], works by using
an XSLT stylesheet [8] to transform the XForm in the browser, client-side, into a

(Re)presentation in XForms

142

combination of HTML and Javascript, so that all processing takes place on the cli-
ent. This has an additional advantage, over a pure server-side implementation,
that 'Show Source' shows the XForms source, and not the transformation.

Such an approach requires the design of equivalent constructs in HTML+Java-
script to implement the XForm constructs. Since XForms controls contain a lot of
implicit functionality, even apparently simple cases can require quite complex
transformations.

As an example, the transformation of

<input ref="creditcard" label="Credit card number"
 alert="Not a valid credit card number"/>

gives the following HTML:

<span class="xforms-control xforms-input xforms-appearance xforms-
optional
 xforms-enabled xforms-readwrite xforms-valid"
 xml:id="xsltforms-mainform-input-2_10_2_4_3_">

 <label class="xforms-label" xml:id="xsltforms-mainform-
label-2_2_10_2_4_3_"
 for="xsltforms-mainform-input-input-2_10_2_4_3_"
 >Credit card number</label>

 <input class="xforms-value"
 xml:id="xsltforms-mainform-input-input-2_10_2_4_3_"
type="text"
 style="text-align: left;"/>

 *

 <span xml:id="xsltforms-mainform-alert-4_2_10_2_4_3_"
 class="xforms-alert-value"
 >Not a valid credit card number

plus a number of event listeners to implement the semantics.
This exposes two essential aspects of the transformation: enclosing ele-

ments for the control as a whole, and each of its subparts – label, input field, sup-
port for the required property and alert value; and the use of class values to
record properties of the control and its bound value. In this case you can see that
it is recorded as being a control, in particular an input control, that the value is
optional not required, the control is enabled, the value is readwrite, and (currently)
valid. Since these last four values are dynamic, depending on a boolean expres-

(Re)presentation in XForms

143

sion and the type, they can change during run-time, for instance xforms-valid
can become xforms-invalid.

Here is another example for a similar control, but bound to a value of type
boolean:

<input ref="truth" label="boolean"/>
which gives:

<span class="xforms-control xforms-input xforms-appearance
 xforms-optional xforms-enabled xforms-readwrite
 xforms-valid" xml:id="xsltforms-mainform-input-2_6_2_4_3_">

 <label class="xforms-label"
 xml:id="xsltforms-mainform-label-1_2_6_2_4_3_"
 for="xsltforms-mainform-input-input-2_6_2_4_3_">boolean</label>

 <input type="checkbox"
 xml:id="xsltforms-mainform-input-input-2_6_2_4_3_"/>

 *

Note that since type is not a dynamic property, the system does not have to be
prepared for types changing.

5. Integration in HTML+CSS
One advantage of using HTML as target code is that you have the power of Cas-
cading Style Sheets (CSS) [3] at your disposal to support presentation. In particu-
lar the CSS can use the class values as shown in the examples above to affect the
presentation.

The most obvious case is for when a value becomes non-relevant, and there-
fore the control becomes disabled. CSS can be used to remove the control from
the presentation:

.xforms-disabled {display: none}
In fact, because of CSS cascading rules, it is essential in this case to override the
cascade:

.xforms-disabled {display: none !important}
Another case is dealing with whether the value is required or not. There is an ele-
ment in the markup that holds an icon to be displayed if the value is required:

(Re)presentation in XForms

144

*
The default is not to display it:

.xforms-required-icon {
 display: none;
}

unless the value is required:
.xforms-required .xforms-required-icon {
 display: inline;
 margin-left: 3px;
 color: red;
}

giving

A further case is if a value is invalid. All information about presentation for
invalidity is contained in the span element of class xforms-alert:

 <span xml:id="xsltforms-mainform-alert-4_2_10_2_4_3_"
 class="xforms-alert-value"
 >Not a valid credit card number

Similarly to required, the default is not to display it:
.xforms-alert {
 display: none;
}

and then if the value becomes invalid, to display it
.xforms-invalid .xforms-alert {
 display: inline;
}

along with the alert icon:
.xforms-alert-icon {
 background-image: url(../img/icon_error.gif);
 background-repeat : no-repeat;
}

giving:

(Re)presentation in XForms

145

Using CSS properties, hovering over the alert icon pops up the alert text:

6. Improvements
For a planned new version of XSLTForms, we are working on a number of
improvements in the visual approach, as well as in the use of the CSS, and the
format of the transformed HTML, the aim being to make the default styling more
attractive, and more flexible. (What is presented here is work in progress.)

For a start, labels will be styled bold, and by default above the control:

This helps in lining up controls vertically and generally makes the style more
restful to the eye.

This is simply done by making the label element a block, with bold font:
.xforms-label {font-weight: bold; display: block}

In the case of a value being required, although the transformed HTML contains a
representation of the asterisk to be included, in the element with class xforms-
required-icon, since CSS offers the ability to insert text, it gives more flexibility
to ignore the required icon, and instead insert it from the CSS:

.xforms-required-icon {display: none}
 .xforms-required .xforms-label:after {content: '*'; color: red}

giving:

This also means that in the future transformed HTML, the span element with
class of required-icon no longer needs to be included.

If a value is invalid, either due to its type or a constraint, using the same tech-
nique a large red X can be displayed after the label:

.xforms-invalid .xforms-label:after
 {content: ' ✖'; color: red}

However, because of CSS cascading rules, only one of these rules can match at
any one time, so that if a value is both required and invalid a rule has to be added
to match that case as well:

.xforms-required.xforms-invalid .xforms-label:after
 {content: '*✖'; color: red}

For invalid input values, the background of the input field will additionally be
coloured a light red:

(Re)presentation in XForms

146

.xforms-invalid .value input
 {background-color: #fcc; border-style: solid; border-width: thin}

Finally for invalid values the alert text has to be displayed. Normally alerts will
not be displayed:

.xforms-alert-icon {display: none}
 .xforms-alert {display: none; position: relative;}

(Again the alert-icon element is no longer needed in the transformed HTML.)
On becoming invalid, the alert text can be popped up:
.xforms-invalid .xforms-alert {display: inline}
 .xforms-alert-value {
 color: white;
 background-color: red;
 margin-left: 0.5ex;
 border: thin solid black;
 padding: 0.2ex
}

the end result being:

7. Skinning
Unfortunately, CSS in general doesn't allow the reordering of content, but never-
theless there is some freedom to how labels of controls can be positioned. Since
the label element is textually before the input field in the transformed HTML, it is
easy to position the label above or to the left of the control. For instance, instead
of above the control as in the last example, to the left:

.xforms-label
 {display: inline-block; width: 12ex; text-align: right}

giving

With care, labels can be positioned to the right of the control, by floating the
label element, or with even more care, below, using relative positioning.

To give the user some freedom in how XForms are displayed, but without
having to know details of CSS, a skinning technique will be used [1] [2]. This is
where a top-level element is given classes that indicate presentation requirements
of the enclosed content. For instance, the enclosing body element can indicate the
positioning required for labels:

(Re)presentation in XForms

147

<body class="xforms-labels-left">
CSS rules then key off this value to provide different presentations for different
cases:

.xforms-label {font-weight: bold}

 .xforms-labels-top .xforms-label
 {display: block; margin: 0}

 .xforms-labels-left .xforms-label
 {display: inline-block; width: 20ex; text-align: right}

Thanks to containment hierarchy, this offers quite a lot of flexibility, since even in
one XForm different sets of controls can be formatted differently:

<group class="xforms-labels-left">
 ...
</group>
<group class="xforms-labels-top">
 ...
</group>

8. Future Transformation
HTML5 [4] allows you to define custom elements for a document.

Although these wouldn't offer any additional functionality, transforming to an
HTML using themwould mean that the transformed HTML can be kept far closer
to the original XForm. As an example, a control such as

<input ref="creditcard" label="Credit card number"
 alert="Not a valid credit card number"/>

could be transformed to
<xforms-input xf-ref="@creditcard">
 <xforms-label>Credit card number</xforms-label>
 <xforms-alert>Not a valid credit card number</xforms-alert>
</xforms-input>

9. Conclusion
XForms offers a lot of flexibility in how it can be implemented. One of the advan-
tages of implementing it by transforming to HTML means that the power of CSS
is available for presentation ends. However, to avoid requiring the XForms pro-
grammer to necessarily know CSS, skinning techniques can be used to offer flexi-
bility to the presentations available. A new XForms implementation is in
preparation that will use those techniques.

(Re)presentation in XForms

148

10. References

Bibliography

[1] Bootstrap. https://getbootstrap.com/css/ .
[2] Bulma. http://bulma.io/documentation/overview/classes/ .
[3] W3C. CSS. 2020. https://www.w3.org/Style/CSS/ .
[4] W3C. HTML5. http://www.w3.org/TR/html5/. .
[5] Steven Pemberton. An Introduction to XForms. XML.com. 2018. https://

www.xml.com/articles/2018/11/27/introduction-xforms/ .
[6] John Boyer (ed). XForms 1.1. 2009. W3C. https://www.w3.org/TR/xforms11 .
[7] Erik Bruchez et al. (eds). XForms 2.0. W3C. 2020. https://www.w3.org/

community/xformsusers/wiki/XForms_2.0 .
[8] W3C. XSLT. https://www.w3.org/TR/xslt/all/ .
[9] Alain Couthures. XSLTForms. AgenceXML. 2014. http://www.agencexml.com/

xsltforms .

(Re)presentation in XForms

149

https://getbootstrap.com/css/
http://bulma.io/documentation/overview/classes/
https://www.w3.org/Style/CSS/
http://www.w3.org/TR/html5/.
https://www.xml.com/articles/2018/11/27/introduction-xforms/
https://www.xml.com/articles/2018/11/27/introduction-xforms/
https://www.w3.org/TR/xforms11
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/TR/xslt/all/
http://www.agencexml.com/xsltforms
http://www.agencexml.com/xsltforms

150

Greenfox – a schema language for
validating file systems

Hans-Juergen Rennau
parsQube GmbH

<hans-juergen.rennau@parsqube.de>

Abstract
Greenfox is a schema language for validating file systems. One key feature is
an abstract validation model inspired by the SHACL language. Another key
feature is a view of the file system which is based on the XDM data model
and thus supports a set of powerful expression languages (XPath, foxpath,
XQuery). Using their expressions as basic building blocks, the schema lan-
guage unifies navigation within and between resources and access to the
structured contents of files with different mediatypes.

Keywords: Validation, SHACL, XSD, JSON Schema, Schematron

1. Introduction
How to validate data against expectations? Major options are visual inspection,
programmatic checking and validation against a schema document (e.g. XSD,
RelaxNG, Schematron, JSON Schema) or a schema graph (e.g. SHACL). Schema
validation is in many scenarios the superior approach, as it is automated and
declarative. But there are also limitations worth considering when thinking about
validation in general.

First, schema languages describe instances of a particular format or mediatype
only (e.g. XML, JSON, RDF), whereas typical projects involve a mixture of medi-
atypes. Therefore schema validation tends to describe the state of resources which
are pieces from a jigsaw puzzle, and the question arises how to integrate the
results into a coherent whole.

Second, several schema languages of key importance are grammar based and
therefore do not support “incremental validation” – starting with a minimum of
constraints, and adding more along the way. We cannot use XSD, RelaxNG or
JSON Schema in order to express some very specific key expectation, without
saying many things about the document as a whole, which may be a task requir-
ing disproportional effort. Rule based schema languages (like Schematron) do
support incremental validation, but they are inappropriate for comprehensive
validation as accomplished by grammar based languages.

As a consequence, schema validation enables isolated acts of resource valida-
tion, but it cannot accomplish the integration of validation results. Put differently,

151

schema validation may contribute to, but cannot accomplish, system validation.
The situation might change in an interesting way if we had a schema language for
validating file system contents – arbitrary trees of files and folders. This simple
abstraction suffices to accommodate any software project, and it can accommo-
date system representations of very large complexity.

This document describes an early version of greenfox, a schema language for
validating file system contents. By implication, it can also be viewed as a schema
language for the validation of systems. Such a claim presupposes that a meaning-
ful reflection of system properties, state and behaviour can be represented by a
collection of data (log data, measurement results, test results, configurations, …)
distributed over a set of files arranged in a tree of folders. It might then some-
times be possible to translate meaningful definitions of system validity into con-
straints on file system contents. At other times it may not be possible, for example
if the assessment of validity requires a tracking of realtime data.

The notion of system validation implies that extensibility must be a key fea-
ture of the language. The language must not only offer a scope of expressiveness
which is immediately useful. It must at the same time serve as a framework, within
which current capabilities, future extensions and third-party contributions are
uniform parts of a coherent whole. The approach we took is a generalization of
the key concepts underlying SHACL [7], a validation language for RDF data.
These concepts serve as the building blocks of a simple metamodel of validation,
which offers guidance for extension work.

Validation relies on the key operations of navigation and comparison. File sys-
tem validation must accomplish them in the face of divers mediatypes and the
necessity to combine navigation within as well as between resources. In response
to this challenge, greenfox is based on a unified data model (XDM) [7] and a unified
navigation model (foxpath/XPath) [3] [4] [5], [9] [11] built upon it.

Validation produces results, and the more complex the system, the more
important it may become to produce results in a form which combines maximum
precision with optimal conditions for integration with other resources. This goal
is best served by a vocabulary for expressing validation results and schema con-
tents in a way which does not require any context (like a document type) for
being understood. We choose an RDF based definition of validation schema and
validation results, combined with a bidirectional mapping between RDF and
more intuitive representations, XML and JSON. For practical purposes, we
assume the XML representation to be the form most frequently used. Concerning
schemas, this document discusses only the XML representation. Concerning
results, XML and RDF are dealt with.

Before providing an overview of the greenfox language, a detailed example
should give a first impression of how the language can be used.

Greenfox – a schema language for validating file systems

152

2. Getting started with greenfox
This section illustrates the development of a greenfox schema designed for vali-
dating a file system tree against a set of expections. Such a validation can also be
viewed as validation of the system “behind” the file system tree, represented by
its contents.

2.1. The system – system S
Consider system S – an imaginary system which is a collection of web services.
We are going to validate a file system representation which is essentially a set of test
results, accompanied by resources supporting validation (XSDs, codelists and
data about expected response messages). The following listing shows a file sys-
tem tree which is a representation of system S, as observed at a certain point in
time:

system-s
. resources
. . codelists
. . . codelist-foo-article.xml
. . xsd
. . . schema-foo-article.xsd
. testcases
. . test-t1
. . . config
. . . . msg-config.xml
. . . input
. . . . getFooRQ*.xml
. . . output
. . . . getFooRS*.xml
. . +test-t2 (contents: see test-t1)
. . usecases
. . . usecase-u1
. . . . usecase-u1a
. +test-t3 (contents: see test-t1)

The concrete file system tree must be distinguished from the expected file system
tree, which is described by the following rules.

Greenfox – a schema language for validating file systems

153

Table 1. Rules defining "validity" of the considered file system.

File or
folder

File path Expectation

folder resources/codel-
ists

Contains one or more codelist files

file resources/codel-
ists/*

A codelist file; name not constrained; must be an
XML document containing <codelist> elements
with a @name attribute and <entry> children

folder resources/xsd Contains one or more XSDs describing services
messages

file resources/xsd/* An XSD schema file; name not constrained
folder .//test-* A test case folder, containing input, output and

config folders; apart from these only optional log-
* files are allowed

folder .//test-*/config Test case config folder, containing file msg-
config.csv

file .//test-*/config/
msg-config.csv

A message configuration file; CSV file with three
columns: request file name, response file name,
expected return code

folder .//test-*/input Test case input folder, containing request messages
file .//test-*/input/* A request message file; name extension .xml

or .json; mediatype corresponding to name exten-
sion

folder .//test-*/output Test case output folder, containing response mes-
sages

file .//test-*/output/* A response message file; name extension .xml
or .json; mediatype corresponding to name exten-
sion

The number and location of testcase folders (test-*) are unconstrained. This
means that the testcase folders may be grouped and wrapped in any way,
although they must not be nested. So the use of a testcases folder wrapping all
testcase folders - and the use of usecase* folders adding additional substructure -
is allowed, but must not be expected. The placing of XSDs in folder resources/
xsd, on the other hand, is obligatory, and likewise the placing of codelist docu-
ments in folder resources/codelists. The names of XSD and codelist files are
not constrained.

Greenfox – a schema language for validating file systems

154

Apart from these static constraints, the presence of some files implies the pres-
ence of other files:
• For every request message, there must be a response message with a name

derived from the request file name (replacing substring RQ with RS).
Expectations are not limited to the presence of files and folders - they include
details of file contents, in some cases relating the contents of different files with
different mediatypes:
• For every response message in XML format, there is exactly one XSD against

which it can be validated
• Every response message in XML format is valid against the appropriate XSD
• Response message items (XML elements and JSON fields) with a particular

name (e.g. fooValue) must be found in the appropriate XML codelist discov-
ered in a set of codelist files

• Response message return codes (contained by XML and JSON documents)
must be as configured by the corresponding row in a CSV table

2.2. Building a greenfox schema "system S"

Now we create a greenfox schema which enables us to validate the file system
against these expectations. An initial version only checks the existence of non-
empty XSD and codelists folders:

<greenfox greenfoxURI="http://www.greenfox.org/ns/schema-examples/system-s"
 xmlns="http://www.greenfox.org/ns/schema">

 <!-- *** System file tree *** -->
 <domain path="\tt\greenfox\resources\example-system\system-s"
 name="system-s">

 <!-- *** System root folder shape *** -->
 <folder foxpath="." id="systemRootFolderShape">

 <!-- *** XSD folder shape *** -->
 <folder foxpath=".\\resources\xsd" id="xsdFolderShape">
 <targetSize count="1"
 countMsg="No XSD folder found"/>

 <file foxpath="*.xsd" id="xsdFileShape">
 <targetSize minCount="1"
 minCountMsg="No XSDs found"/>
 </file>
 </folder>

Greenfox – a schema language for validating file systems

155

 <!-- *** Codelist folder shape *** -->
 <folder foxpath=".\\resources\codelists" id="codelistFolderShape">
 <targetSize count="1"
 countMsg="No codelist folder found"/>

 <file foxpath="*[is-xml(.)]" id="codelistFileShape">
 <targetSize minCount="1"
 minCountMsg="No codelist files found"/>
 </file>
 </folder
 </folder>
 </domain>
</greenfox>
The <domain> element represents the root folder of a file system tree to be valida-
ted. The folder is identified by a mandatory @path attribute.

A <folder> element describes a set of folders selected by a target declaration.
Here, the target declaration is a foxpath expression, given by a @foxpath attribute.
Foxpath [3] [4] is an extended version of XPath 3.0 which supports file system
navigation, node tree navigation and a mixing of file system and node tree navi-
gation within a single path expression. Note that file system navigaton steps are
connected by a backslash operator, rather than a slash, which is used for node
tree navigation steps. The foxpath expression is evaluated in the context of a
folder selected by the target declaration of the containing <folder> element (or
the @path of <domain>, if there is no containing <folder>). Evaluation “in the
context of a folder” means that the initial context item is the file path of that folder,
so that relative file system path expressions are resolved in this context (see [3] for
details). For example, the expression

 .\\resources\xsd
resolves to the xsd folders contained by a resources folder found at any depth
under the context folder, which here is

 \tt\greenfox\resources\example-system\system-s\.
Similarly, a <file> element describes the set of files selected by its target declara-
tion, which is a foxpath expression evaluated in the context of a folder selected by
the containing <folder> element’s target declaration. So here we have a file ele-
ment describing all files found at the relative path

 *.xsd
evaluated in the context of any folder selected by

 \tt\greenfox\resources\example-system\system-s\\resources\xsd
A <folder> element represents a folder shape, which is a set of constraints

applying to a target. The target is a (possibly empty) set of folders, selected by a

Greenfox – a schema language for validating file systems

156

target declaration, e.g. a foxpath expression. The constraints of a folder shape are
declared by child elements of the shape element. Every folder in the target is tes-
ted against every constraint in the shape. When a folder is tested against a con-
straint, it is said to be the focus resource of the constraint.

Likewise, a <file> element represents a file shape, defining a set of con-
straints applying to a target, which is a set of files selected by a target declaration.
Folder shapes and file shapes are collectively called resource shapes.

The expected number of folders or files belonging to the target of a shape can
be expressed by declaring a constraint. A constraint has a kind (called the con-
straint component) and a set of arguments passed to the constraint parameters.
Every kind of constraint has a "signature", a characteristic set of mandatory and
optional constraint parameters, defined in terms of name, type and cardinality. A
constraint component can therefore be thought of as a library function, and a con-
straint declaration is like a function call, represented by elements and/or attributes.
Here, we declare a TargetMinCount constraint, represented by a @minCount
attribute on a <targetSize> element. When a resource is validated against a con-
straint, the imaginary function consumes the constraint parameter values,
inspects the resource and returns a validation result. If the constraint is violated,
the validation result is a <gx:red> element which contains an optional message
(either supplied by an attribute or constructed by the processor), along with a set
of information items identifying the violating resource (@filePath), the constraint
(@constraintComp and @constraintID) and its parameter values (@minCount). In
the case of a TargetMinCount constraint, the violating resource is the folder pro-
viding the context when evaluating the target declaration. Example result:

<gx:red msg="No XSDs found"
 filePath="C:/tt/greenfox/resources/example-system/system-s/resources/
xsd"
 constraintComp="TargetMinCount"
 constraintID="TargetSize_2-minCount"
 resourceShapeID="xsdFileShape"
 minCount="1"
 valueCount="0"
 targetFoxpath="*.xsd"/>

In a second step we extend our schema with a folder shape whose target consists
of all testcase folders in the system:

<!-- *** Testcase folder shape *** -->
<folder foxpath=".\\test-*[input][output][config]"
id="testcaseFolderShape">
 <targetSize minCount="1"
 minCountMsg="No testcase folders found">

Greenfox – a schema language for validating file systems

157

 <!-- # Check - test folder content ok? -->
 <folderContent
 closed="true"
 closedMsg="Testcase member(s) other than input/output/config, log-
*.">
 <memberFolders names="input, output, config"/>
 <memberFile name="log-*" count="*"/>
 </folderContent>
 …
</folder>

The target includes all folders found at any depth under the current context
folder (system-s), matching the name pattern test-* and having (at least) three
members input, output and config. The TargetMinCount constraint checks that
the system contains at least one such folder. The contents of these testcase folders
are subject to several constraints defined by the <folderContent> element. There
must be three subfolders input, output and config, and there may be any num-
ber of log-* elements, but not any other members (FolderContentClosed con-
straint).

We proceed with a file shape which targets the msg-config.csv file in the
config folder of the test case:

<!-- *** msg config file shape *** -->
<file foxpath="config\msg-config.csv" id="msgConfigFileShape" ...>
 <targetSize count="1"
 countMsg="Config file missing"/>
 ...
</file>

The TargetCount constraint makes this file mandatory, but we want to be more
specific: to constrain the file contents. The file must be a CSV file, and the third col-
umn (which according to the header row is called returnCode) must contain a
value which is "OK" or "NOFIND" or matches the pattern "ERROR_*". We add
attributes to the <file> element which specify how to parse the CSV file into an
XML representation (@mediatype, @csv.separator, @csv.header). As with other
non-XML mediatypes (e.g. JSON or HTML), an XML view enables us to leverage
XPath and express a selection of content items, preparing the data material for
fine-grained validation.

We add to the file shape an <xpath> element which describes a selection of
content items and defines a constrait which these items must satisfy (expressed by
the <in> child element):

<!-- *** msg config file shape *** -->
<file foxpath="config\msg-config.csv" id="msgConfigFileShape"
 mediatype="csv" csv.separator="," csv.withHeader="yes">
 ...

Greenfox – a schema language for validating file systems

158

 <!-- # Check - configured return codes ok? -->
 <xpath expr="//returnCode"
 inMsg="Config file contains unknown return code">
 <in>
 <eq>OK</eq>
 <eq>NOFIND</eq>
 <like>ERROR_*</like>
 </in>
 </xpath>
</file>

The item selection is defined by an XPath expression (provided by @expr), and an
XPathValueIn constraint is specified by the <in> child element: an item must
either be equal to one of the strings “OK” or “NOFIND”, or it must match the
glob pattern “ERROR_*”.

It is important to understand that the XPath expression is evaluated in the
context of the document node of the document obtained by parsing the file. Here
comes an example of a conformant message definition file:

request,response,returnCode
getFooRQ1.xml,getFooRS1.xml,OK
getFooRQ2.xml,getFooRS2.xml,NOFIND
getFooRQ3.xml,getFooRS3.xml,ERROR_SYSTEM

while this example violates the XPathValueIn constraint:
request,response,returnCode
getFooRQ1.xml,getFooRS1.xml,OK
getFooRQ2.xml,getFooRS2.xml,NOFIND
getFooRQ3.xml,getFooRS3.xml,ERROR-SYSTEM

The second example would produce the following validation result, identify
resource and constraint, describing the constraint and exposing the offending
value:

<gx:red msg="Config file contains unknown return code"
 filePath="C:/tt/greenfox/resources/example-system/system-s/resources/
xsd"
 constraintComp="ExprValueIn"
 constraintID="xpath_1-in"
 valueShapeID="xpath_1"
 exprLang="xpath"
 expr="//returnCode">
 <gx:value>ERROR-SYSTEM</gx:value>
</red>

According to the conceptual framework of greenfox, the <xpath> element does
not, as one might expect, represent a constraint, but a value shape. A value shape
is a container combining a single value mapper with a set of constraints: the

Greenfox – a schema language for validating file systems

159

value mapper maps the focus resource to a value - called a resource value - which
is validated against each one of the constraints. Greenfox supports two kinds of
value mapper – XPath expression and foxpath expression, and accordingly there
are two variants of a value shape – XPath value shape (represented by an
<xpath> element) and Foxpath value shape (<foxpath>). See Section 5 for more
information about value shapes.

Now we are going to check request message files: for each such file, there must
be a response file in the output folder, with a name derived from the request file
name (replacing the last occurrence of substring “RQ” with “RS”). This is a con-
straint which does not depend on file contents, but on file system contents found
“around” the focus resource. A check requires navigation of the file system,
rather than file contents. We solve the problem with a Foxpath value shape:

<!-- *** Request file shape *** -->
<file foxpath="input\(*.xml, *.json)" id="requestFileShape">
 ...
 <!-- # Check - request with response ? -->
 <foxpath
 expr="..\..\output*\file-name(.)"
 containsXPath=
 "$fileName ! replace(., '(.*)RQ(.*)$', '$1RS$2')"
 containsXPathMsg="Request without response"
 ...
<file>

A Foxpath value shape combines a foxpath expression (@expr) with a set of con-
straints. The expression maps the focus resource to a resource value, which is
validated against all constraints. Here we have an expression which maps the
focus resource to a list of file names found in the output folder. A single con-
straint, represented by the @containsXPath attribute, requires the foxpath expres-
sion value to contain the value of an XPath expression, which maps the request
file name to the response file name. The constraint is satisfied if and only if the
response file is present in the output folder.

As with XPath value shapes, it is important to be aware of the evaluation con-
text. We have already seen that in an XPath value shape the initial context item is
the document node obtained by parsing the text of the focus resource into an XML
representation. In a Foxpath value shape the initial context item is the file path of
the focus resource, which here is the file path of a request file. The foxpath
expression starts with two steps along the parent axis (..\..) which lead to the
enclosing testcase folder, from which navigation to the response files and their
mapping to file names is trivial:

 ..\..\output*\file-name(.)

Greenfox – a schema language for validating file systems

160

A Foxpath value shape does not require the focus resource to be parsed into a
document, as the context is a file path, rather than a document node. Therefore, a
Foxpath value shape can also be used in a folder shape. We use this possibility in
order to constrain the codelists folder to contain non-empty <codelist> ele-
ments with unique names:

<folder foxpath=".\\resources\codelists" id="codelistFolderShape">
 ...
 <!-- # Check - folder contains codelists? -->
 <foxpath expr=".*.xml//codelist[entry]/@name"
 minCount="1"
 minCoutMsg="Codelist folder without codelists"
 itemsUnique="true"
 itemsUniqueMsg="Codelist names must be unique"/>
 ...
</folder>

Note the unified view of file system contents offered by the foxpath language: a
single expression starts with file system navigation, visiting all .xml files in the
current folder, enters their XML content and selects the @name attributes of non-
empty codelist elements, which may occur at any depth inside the content trees.

Now we turn to the response message files. They must be “fresh”, that is, have a
timestamp of last modification which is after a limit timestamp provided by a call
parameter of the system validation. This is accomplised by a LastModified con-
straint, which references the parameter value. Besides, response files must not be
empty (FileSize constraint):

<!-- *** Response file shape *** -->
<file foxpath="output\(*.xml, *.json)" mediatype="xml-or-json">
 ...
 <!-- # Check - response fresh? -->
 <lastModified ge="${lastModified}"
 geMsg="Stale output file"

 <!-- # Check - response non-empty? -->
 <fileSize gt="0"
 gtMsg="Empty output file"
 ...
</file>

The placeholder ${lastModified} is substituted with the value passed to the
greenfox processor as input parameter and declared in the schema as a context
parameter:

<greenfox ... >
 <!-- *** External context *** -->

Greenfox – a schema language for validating file systems

161

 <context>
 <field name="lastModified"
 </context>
 ...
</greenfox>

We have several expecations related to the contents of response files. If the
response is an XML document (rather than JSON), it must be valid against some
XSD found in the XSD folder. XSD validation is triggered by an XSDValid con-
straint, with a foxpath expression locating the XSD(s) to be used:

<!-- *** Response file shape *** -->
<file foxpath="output\(*.xml, *.json)" mediatype="xml-or-json">
 ...
 <!-- # Check - schema valid? (only if XML) -->
 <ifMediatype eq="xml">
 <xsdValid msg="Response msg not XSD valid"
 xsdFoxpath="$domain\resources\xsd*.xsd"/>
 </ifMediatype>
 ...
</file>

It is not necessary to specify an individual XSD – the greenfox processor inspects
all XSDs matching the expression and selects for each file to be validated the
appropriate XSD. This is achieved by comparing name and namespace of the root
element with local name and target namespace of all element declarations found
in the XSDs selected by the foxpath expression. If not exactly one element decla-
ration is found, an error is reported, otherwise XSD validation is performed. Note
the variable reference $domain, which can be referenced in any XPath or foxpath
expression and which provides the file path of the domain folder.

The next condition to be checked is that certain values from the response
(selected by XPath //*:fooValue) are found in a particular codelist. Here we use
an XPath value shape with an ExprValueInFoxpath constraint, represented by
the @inFoxpath attribute:

<!-- *** Response file shape *** -->
<file foxpath="output\(*.xml, *.json)" mediatype="xml-or-json">
 ...
 <!-- # Check - known article number? -->
 <xpath expr="//*:fooValue"
 inFoxpath="$domain\\codelists*.xml
 /codelist[@name eq 'foo-article']/entry/@code"
 inFoxpathMsg="Unknown foo article number"/>
</file>

As always with an XPath value shape, the XPath expression (@expr) selects the
content items to be checked. The ExprValueInFoxpath constraint works as fol-

Greenfox – a schema language for validating file systems

162

lows: it evaluates the foxpath expression provided by constraint parameter
@inFoxpath and checks that every item of the value to be checked also occurs in
the value of the foxpath expression. As here the foxpath expression returns all
entries of the appropriate codelist, the constraint is satisfied if and only if every
<fooValue> element in the response contains a string found in the codelist.

Note that this value shape works properly for both, XML and JSON responses.
Due to the @mediatype annotation on the file shape, which is set to xml-or-json,
the greenfox processor first attempts to parse the file as an XML document. If this
does not succeed, it attempts to parse the file as a JSON document and transform
it into an equivalent XML representation. In either case, the XPath expression is
evaluated in the context of the document node of the resulting XDM node tree. In
such cases one has to make sure, of course, that the XPath expression can be used
in both structures, original XML and XML capturing the JSON content, which is
the case in our example.

As a last constraint, we want to check the return code of a response. The
expected value can be retrieved from the message config file, a CSV file in the
config folder: it is the value found in the third column (named returnCode) of
the row in which the second column (named response) contains the file name of
the response file. We use a Foxpath value shape with an expression fetching the
expected return value from the CSV file. This is accomplished by a mixed naviga-
tion, starting with file system navigation leading to the CSV file, then drilling
down into the file and fetching the item of interest. The value against which to
compare is retrieved by a trivial XPath expression (@eqXPath):

<!-- *** Response file shape *** -->
<file foxpath="output\(*.xml, *.json)" mediatype="xml-or-json">
 ...
 <!-- # Check - return code expected? -->
 <foxpath expr="..\..\config\msg-config.csv\csv-doc(., ',', 'yes')
 //record[response eq $fileName]/returnCode"
 eqXPath="//*:returnCode"
 eqXPathMsg="Return code not the configured
value"
</file>

The complete schema is shown in Appendix A. To summarize, we have devel-
oped a schema which constrains the presence and contents of folders, the pres-
ence and contents of files, and relationships between contents of different files, in
some cases belonging to different mediatypes. The development of the schema
demanded familiarity with XPath, but no programming skills beyond that.

3. Basic principles
The "Getting started" section has familiarized you with the basic building blocks
and principles of greenfox schemas. They can be summarized as follows.

Greenfox – a schema language for validating file systems

163

• A file system is thought of as containing two kinds of resources, folders and
files.

• Resources are validated against resource shapes.
• There are two kinds of resource shapes – folder shapes and file shapes.
• A resource shape is a set of constraints which apply to each resource valida-

ted against the shape.
• A resource which is validated against a shape is called a focus resource.
• A resource shape may have a target declaration which selects a set of focus

resources.
• A target declaration of a resource shape can be a file path or a foxpath expres-

sion.
• A target declaration of a resource shape is resolved in the context of all resour-

ces obtained from the target declaration of the containing resource shape.
• Every violation of a constraint produces a validation result describing the

violation and identifying the focus resource and the constraint.
• Constraints can apply to resource properties like the last modification time or

the file size.
• Constraints can apply to a resource value, which is a value to which the

resource is mapped by an expression, or by a chain of expressions.
• A value shape combines an expression mapping the focus resource to a

resource value, or a resource value to another resource value, and a set of con-
straints against which to validate the resource value obtained.

• The expression used by a value shape may be an XPath expression or a fox-
path expression.

• The foxpath context item used by a value shape mapping a focus resource to
a resource value is the file path of the focus resource. The foxpath context item
used by a value shape mapping a preceding resource value to another
resource value is a single item of the preceding resource value.

• The XPath context item used by a value shape mapping a focus resource to a
resource value is the root of an XDM node tree representing the content of the
focus resource, or the file path of the focus resource if an XDM node tree can-
not be constructed. The XPath context item used by a value shape mapping a
preceding resource value to another resource value is a single item of the pre-
ceding resource value.

• XDM node tree representations of file resources can be controlled by medi-
atype related attributes on a file shape.

• When validating resources against resource shapes, the heterogeneity of
mediatypes can be hidden by a unified representation as XDM node trees.

• When validating resources against resource shapes, the heterogeneity of navi-
gation (within resource contents and between resources) can be hidden by a
unified navigation language. (foxpath)

Greenfox – a schema language for validating file systems

164

4. Information model
This section describes the information model underlying the operations of green-
fox.

4.1. Part 1: resource model
A file system tree is a tree whose nodes are file system resources – folders and
files.

A file system resource has an identity, resource properties, derived resource
properties and resource values.

The resource identity of a file system resource can be expressed by a combina-
tion of file system identity and a file path locating the resource within the file sys-
tem.

A resource property has a name and a value which can be represented by an
XDM value.

A derived resource property is a property of a resource property value, or of a
derived resource property value, which can be represented by an XDM value.

A resource value is the XDM value of an expression evaluated in the context
of a resource property, or of a derived resource property, or of an item from
another resource value.

4.1.1. Folder resources

The table below summarizes the resource properties of a folder resource, as cur-
rently evaluated by greenfox. More properties may be added in the future, e.g.
representing access rights.

Table 2. Resource properties of a folder resource.

Property
name

Value type Description

[name] xsd:string? The folder name; optional – the file system root
folder does not have a name

[parent] Folder resource The XDM representation of resource identity is its
file path

[children] Folder and file
resources

The XDM representation of resource identity is its
file path

[last-modi-
fied]

xsd:dateTime May be out of sync when comparing values of
resources from different machines

A folder has the following derived resource properties.

Greenfox – a schema language for validating file systems

165

Table 3. Derived resource properties of a folder resource.

Property
name

Value type Description

[filepath] xsd:string The names of all ancestor folders and the folder
itself, separated by a slash

Resource values of a folder are obtained by evaluating a foxpath expression in
the context of [filepath]. They can also be obtained by evaluating an XPath or a
foxpath expression in the context of an item taken from another resource value.
See Appendix D for implications of this recursive definition.

4.1.2. File resources

A file has the following resource properties, as currently evaluated by greenfox.

Table 4. Resource properties of a file resource.

Property
name

Value type Description

[name] xsd:string Mandatory – a file must have a name
[parent] Folder resource The XDM representation of resource identity is its

file path
[last-modi-
fied]

xsd:dateTime May be out of sync when comparing values of
resources from different machines

[size] xsd:integer File size, in bytes
[sha1] xsd:string SHA-1 hash value of file contents
[sha256] xsd:string SHA-256 hash value of file contents
[md5] xsd:string MD5 hash value of file contents
[text] xsd:string? The text content of the file (empty sequence if not

a text file)
[encoding] xsd:string? The encoding of the text content of the file (empty

sequence if not a text file)
[octets] xsd:base64-

Binary
The binary file content

A file has the following derived resource properties, as currently evaluated by
greenfox.

Greenfox – a schema language for validating file systems

166

Table 5. Derived resource properties of a file resource.

Property name Value type Description
[filepath] xsd:string The names of all ancestor folders and the

folder itself, separated by a slash
[xmldoc] document-

node()?
The result of parsing [text] into an XML
document

[jsondoc-basex] document-
node()?

The result of parsing [text] into a JSON
document represented by a document
node in accordance with the rules defined
by BaseX documentation

[jsondoc-w3c] document-
node()?

The result of parsing [text] into a JSON
document represented by a document
node in accordance with XPath function
fn:json-to-xml

[htmldoc] document-
node()?

The result of parsing [text] into an XML
document represented by a document
node in accordance with the rules defined
by TagSoup documentation

[csvdoc] document-
node()?

The result of parsing [text] into an XML
document represented by a document
node, as controlled by the CSV parsing
parameter values derived from a file
shape, in accordance with the rules
defined by BaseX documentation

Resource values of a file are obtained by evaluating a foxpath expression in the
context of [filepath], or evaluating an XPath expression in the context of a [*doc]
or [*doc-*] property. They can also be obtained by evaluating an XPath or a fox-
path expression in the context of an item taken from another resource value. See
Appendix D for implications of this recursive definition.

For information about CSV parsing parameters, see [1], section # wiki/
CSV_Module.

4.2. Part 2: schema model

File system validation is a mapping of a file system tree and a greenfox schema to
a set of validation results.

A greenfox schema is a set of shapes.
A shape is a resource shape or a value shape.

Greenfox – a schema language for validating file systems

167

A resource shape is a set of constraints applicable to a file system resource. It
has an optional target declaration.

A target declaration specifies the selection of a target.
A target is a set of focus resources, or a focus value.
A focus resource is a resource to be validated against a resource shape.
A focus value is a resource value providing a context in which to evaluate

value shapes (rather than in the context of a resource's file path or node tree rep-
resentation). A focus value is typically a set of nodes selected from the resource's
node tree representation.

A resource shape is a folder shape or a file shape.
A value shape is a mapping of a focus resource, or of a resource value, to a

resource value and a set of constraints which apply to the value.
A constraint maps a resource property or a resource value to a validation

result.
A constraint is defined by a constraint declaration.
A constraint declaration is provided by a shape. It identifies a constraint com-

ponent and assigns values to the constraint parameters.
A constraint component is a set of constraint parameter definitions and a vali-

dator.
A constraint parameter definition specifies a name, a type, a cardinality range

and value semantics.
A validator is a set of rules how a resource property or a resource value and

the values of the constraint parameters are mapped to a validation result.
A validation result describes the outcome of validating a resource against a

constraint. It contains a boolean value signaling conformance, an identification of
the resource and the constraint, constraint parameter values and optional details
about the violation.

4.3. Part 3: validation model

File system validation is a mapping of a file system tree and a greenfox schema
to a set of validation results, as defined in the following paragraphs.

Validation of a file system tree against a greenfox schema: Given a file sys-
tem tree and a greenfox schema, the validation results are the union of results of
the validation of the file system tree against all shapes in the greenfox schema.

Validation of a file system tree against a shape: Given a file system tree and a
shape in the greenfox schema, the validation results are the union of the results of
the validation of all focus resources that are in the target of the shape.

Validation of a focus resource against a shape: Given a focus resource in the
file system tree and a shape in the greenfox schema, the validation results are the
union of the results of the validation of the focus resource against all constraints
declared by the shape.

Greenfox – a schema language for validating file systems

168

Validation of a focus resource against a constraint: Given a focus resource in
the file system tree and a constraint of kind C in the greenfox schema, the valida-
tion results are defined by the validator of the constraint component C. The vali-
dator typically takes as input a resource property or a resource value of the focus
resource and the arguments supplied to the constraint parameters.

5. Schema building blocks

This section summarizes the building blocks of a greenfox schema. Building
blocks are the parts of which a schema serialized as XML is composed. The serial-
ized schema should be distinguished from the logical schema, which is independ-
ent of a serialization and can be described as a set of logical components (as
defined by the information model) and parameter bindings.

Each building block is represented by XML elements with a particular name.
There is not necessarily a one-to-one correspondence between building blocks
and logical components as defined by the information model. An Import declara-
tion, for example, is a building block without corresponding logical component.
Constraints, on the other hand, are logical components which in many cases are
not represented by a separate building block, but by attributes attached to a
building block. Note also that the information model includes logical components
built into the greenfox language and without representation in any given schema
(e.g. validators).

Table 6. The building blocks of a greenfox schema.

Building block Role XML representa-
tion

Import declara-
tion

Declares the import of another greenfox
schema so that its contents are included in
the current schema

gx:import

Context decla-
ration

Declares external schema variables, the val-
ues of which can be supplied by the agent
launching the validation. Each variable is
represented by a gx:field child element.

gx:context

Shapes library A collection of shapes without target decla-
ration, which can be referenced by other
shapes

gx:shapes

Constraints
library

A collection of constraint declaration nodes,
which can be referenced by shapes

gx:constraints

Greenfox – a schema language for validating file systems

169

Building block Role XML representa-
tion

Constraint
components
library

A collection of constraint component defini-
tions, for which constraints can be declared

gx:constraint-
Components

Constraint
component
definition

A user-defined constraint component. It
declares the constraint parameters and pro-
vides a validator. Parameters are represen-
ted by gx:param child elements, the
validator by a gx:validatorXPath or
gx:validatorFoxpath child element, or a
@validatorXPath or @validatorFoxpath
attribute

gx:constraint-
Component

Domain A container element wrapping the shapes
used for validating a particular file system
tree, identified by its root folder

gx:domain

Resource shape A shape applicable to a file system folder or
file

gx:folder
gx:file

Value shape A shape applicable to a resource value gx:xpath
gx:foxpath

Focus mapper Maps a resource to a focus value, or the
items of a focus value to another focus
value; contains value shapes to be applied
to the focus value; may contain other Focus
mappers using the focus value items as
input

gx:focusNode

Base shape
declaration

References a shape so that its constraints are
included in the shape containing the refer-
ence

gx:baseShape

Constraint dec-
laration node

An element representing one or several con-
straints declared by a shape. Constraint
parameters are represented by attributes
and/or child elements

gx:fileSize
gx:folderContent
gx:hashCode
gx:lastModified
gx:mediaType
gx:resourceName
gx:targetSize
gx:xsdValid

Greenfox – a schema language for validating file systems

170

Building block Role XML representa-
tion

Conditional
node

A set of building blocks associated with a
condition, so that the building blocks are
only used if the condition is satisfied

gx:ifMediatype

6. Schema language extension
This section describes user-defined constraint components. Such components are
defined within a greenfox schema by a gx:constraintComponent element, which
specifies the constraint component name, declares the constraint parameters and
provides an implementation. The implementation is an XPath or a foxpath
expression, which accesses the parameter values as pre-bound variables. User-
defined constraint components are used like built-in components: a constraint is
declared by an element with attributes (or child elements) providing the parame-
ter values and optional messages.

As an illustrative example, consider the creation of a new constraint compo-
nent characterized as follows.

Constraint component IRI: ex:grep
Constraint parameters:

Name Type Meaning Mandatory? Default value
regex xsd:string A regular

expression
+ -

flags xsd:string Evaluation flags - Zero-length
string

Semantics:
"A constraint is satisfied if the focus resource is a text file containing a line

matching regular expression $regex, as controlled by the regex evaluation flags
given by $flags (e.g. case-insensitively)."

The implementation may be provided by the following element, added to the
schema as a child element of gx:constraintComponents:

<constraintComponent constraintElementName="ex:grep">
 <param name="pattern" type="xs:string"/>
 <param name="flags" type="xs:string?"/>
 <validatorXPath>
 exists(unparsed-text-lines($this)[matches(., $pattern, $flags)])
 </validatorXPath>
</constraintComponent>

Greenfox – a schema language for validating file systems

171

The context item supplied to the validator is assigned by the greenfox processor
according to the following rules:
• If the constraint is used by a value shape: an item from the resource value
• If the constraint is used by a folder shape: the file path of the focus resource
• If the constraint is used by a file shape, the validator is an XPath expression

and the file can be parsed into an XDM node tree: the root node of the node
tree

• Otherwise the file path of the focus resource
Because of these rules, the example code uses the built-in variable $this which is
always bound to the file path, rather than the context item (.) which may be the
file path or a document node, dependent on the mediatype of the file.

The constraint can be used like this:
<file foxpath="...">
 ex:grep pattern="fbIx?" flags="i"
 msg="File does not contain string '$pattern'."
 msgOK="File contains string '$pattern'."/>
</file>

Note the variable references in the message text, which the greenfox processor
replaces with the actual parameter values.

7. Validation results
This section describes the results produced by a greenfox validation.

7.1. Validation reports and representations

The primary result of a greenfox validation is an RDF graph called the white vali-
dation report. This is mapped to the red validation report, an RDF graph
obtained by removing from a white report all triples not related to constraint vio-
lations. For red and white validation reports a canonical XML representation is
defined. Apart from that, there are derived representations, implementation-
dependent reports which may use any data model and mediatype.

The white validation report is an RDF graph with exactly one instance of
gx:ValidationReport. The instance has the following properties:
• gx:conforms, with an xsd:boolean value indicating conformance
• gx:result, with one value ...

• for each constraint violation (“red and yellow values”)
• for each constraint check which was successful (“green values”)
• for each observation, which is a result triggered by a value shape in order

to record a resource value not related to constraint checking (“blue val-
ues”)

Greenfox – a schema language for validating file systems

172

The red validation report is an RDF graph obtained by removing from the white
validation report all green and blue result values. Note that the validation report
defined by SHACL [7] corresponds to the red validation report defined by green-
fox.

The canonical XML representation of a white or red validation report is an
XML document with a <gx:validationReport> root element. It contains for each
gx:result value from the RDF graph one child element, which is a <gx:red>,
<gx:yellow>, <gx:green> or <gx:blue> element, according to the gx:result/
gx:severity property value being gx:Violation, gx:Warning, gx:Pass or
gx:Observation).

A derived representation is any kind of data structure, using any mediatype,
representing information content from the white or red validation report in an
implementation-defined way.

7.2. Validation result

A validation result is a unit of information which describes the outcome of vali-
dating a focus resource against a constraint: either constraint violation (“red” or
“yellow” result), or conformance (“green” result).

A validation result is an RDF resource with several properties as described in
Appendix C. Key features of the result model are:

• Every result is related to an individual file system resource (file or folder)
• Every result is related to an individual constraint (and, by implication, a

shape)

This allows for meaningful aggregation by resource, by constraint and by shape,
as well as any combination of aggregated resources, constraints and shapes. Such
aggregation may be useful, e.g. for integrating validation results into a graphical
representation of the file system, or for analysis of impact.

See Appendix C for a detailed description of the validation result model –
RDF properties, SHACL equivalent and XML representation.

8. Implementation
An implementation of a greenfox processor is available on github [6]. The pro-
cessor is provided as a command-line tool (greenfox.bat, greenfox.sh). Exam-
ple call:

greenfox "val?gfox=/projects/greenfox/example-schemas/gfox-system-s.xml,
 domain=/projects/greenfox/example-systems/system-s"

The implementation is written in XQuery and requires the use of the BaseX [1]
XQuery processor.

Greenfox – a schema language for validating file systems

173

9. Discussion
Due to the rigorous framework on which it is based, the functionality of greenfox
can be extended easily. Any number of new constraint components can be added
without increasing the complexity of the language, as the usage of any constraint
component follows the same pattern: select the component and assign the param-
eter values. Validation results likewise retain their simplicity, as their structure is
immutable: a collection of result objects, reporting the validation of a single
resource against a single constraint, expressed in a small and stable core vocabu-
lary. New constraint components can be enhancements of the core language or
extensions defined by user-defined schemas. Library schemas may give access to
domain-specific sets of constraint components.

Another aspect of extension concerns the reuse of existing constraints and
shapes. Reuse should be facilitated by refining the syntax and semantics of
parameterizing and extending existing components. The value gain is immediate
and the purity of the conceptual framework is not endangered.

The remainder of this discussion deals with the possibility to extend greenfox
beyond adding new constraint components and refining techniques of compo-
nent reuse. Care must be taken to avoid a hodgepodge of features increasing
complexity and reducing uniformity, making further extension increasingly diffi-
cult and risky. Ideally, the future development of the language should be guarded
by an architectural style as defined by Roy Fielding [2] – a set of architectural con-
straints. A good starting point is an attempt to take an abstract and fundamental
view of the language.

Greenfox is tree-oriented, as a tree-structured perception of a file system is
natural: a folder contains folders and files, a file (often) contains tree-structured
information (XML, JSON, HTML, CSV, …). The expressiveness of greenfox can in
large parts be attributed to the expressiveness of tree navigation languages
(XPath, XQuery, foxpath), in combination with the suitability of the XDM model
[8] for turning different mediatypes into a unified substrate for those languages.

On the other hand, greenfox is based on a rigorous conceptual framework
which has been defined by SHACL [7], a validation language for graphs – with-
out any relationship to tree structures. This apparent contradiction is resolved by
identifying the fundamental concepts shared by the SHACL and greenfox lan-
guages, distinguishing them from derived concepts accounting for all the out-
ward differences. Such fundamental concepts are:
1. itemization of information
2. identification of a subset of items with resources
3. constraint check: resource + constraint parameters = true/false + details
4. itemization of validation: one resource against one constraint
5. itemization of validation results: one unit per pair of resource and constraint
6. resource interface model: resource properties and resource values

Greenfox – a schema language for validating file systems

174

7. resource value model: a mapping of resource property or resource value to a
value

The degree of abstraction makes it unnecessary to prescribe the data model
(RDF / XDM), the alignment between items and resources (RDF-nodes / Files
+Folders), the value mapping languages (SPARQL / XPath+foxpath). The concep-
tual foundation is equally well-suited for supporting an RDF or an XDM based
view.

This perception can give guidance for the further development of greenfox.
Greenfox differs from other validation languages in its main goal which is a uni-
fied view on system validity, integrating any resources which can be accommo-
dated in a file system. Greenfox is intent on hiding outward heterogeneity (e.g. of
mediatype) behind rigorous abstractions. In this field, RDF has very much to offer,
as it separates information content from its representation in a most radical way.
There is no reason not to also consider the use of RDF nodes as resource values,
or to use RDF expressions as vehicles of mapping and navigation. The integration
of graph and tree models, the combination of their complementary strengths,
holds considerable promise for anyone interested in unified views of information.
In spite of its deep commitment to a tree-oriented data model and expression lan-
guages built upon it, the greenfox language might in due time integrate with
graph technology in order to offer yet more comprehensive answers to problems
of validity.

A. Greenfox schema "system S"
This appendix lists the complete schema developed in Section 2.
<?xml version="1.0" encoding="UTF-8"?>
<greenfox greenfoxURI="http://www.greenfox.org/ns/schema-examples/system-s"
 xmlns="http://www.greenfox.org/ns/schema">

 <!-- *** External context *** -->
 <context>
 <field name="lastModified" value="2019-12-01"/>
 </context>

 <!-- *** System file tree *** -->
 <domain path="\tt\greenfox\resources\example-system\system-s"
 name="system-s">

 <!-- *** System root folder shape *** -->
 <folder foxpath="." id="systemRootFolderShape">

 <!-- *** XSD folder shape *** -->
 <folder foxpath=".\\resources\xsd" id="xsdFolderShape">

Greenfox – a schema language for validating file systems

175

 <targetSize count="1"
 countMsg="No XSD folder found"/>
 <file foxpath="*.xsd" id="xsdFileShape">
 <targetSize minCount="1"
 minCountMsg="No XSDs found"/>
 </file>
 </folder>

 <!-- *** Codelist folder shape *** -->
 <folder foxpath=".\\resources\codelists"
 id="codelistFolderShape">
 <targetSize count="1"
 countMsg="No codelist folder found"/>

 <!-- # Check - folder contains codelists? -->
 <foxpath
 expr="*.xml/codelist[entry]/@name"
 minCount="1"
 minCountMsg="Codelist folder without codelists"
 itemsUnique="true"
 itemsUniqueMsg="Codelist names must be unique"/>

 <file foxpath="*[is-xml(.)]" id="codelistFileShape">
 <targetSize minCount="1"
 minCountMsg="No codelist files found"/>
 </file>
 </folder>

 <!-- *** Testcase folder shape *** -->
 <folder foxpath=".\\test-*[input][output][config]"
 id="testcaseFolderShape">
 <targetSize minCount="1"
 minCountMsg="No testcase folders found"/>

 <!-- # Check - test folder content ok? -->
 <folderContent
 closed="true"
 closedMsg="Testcase contains member other than
 input, output, config, log-*.">
 <memberFolders names="input, output, config"/>
 <memberFile name="log-*" count="*"/>
 </folderContent>

 <!-- *** msg config shape *** -->
 <file foxpath="config\msg-config.csv" id="msgConfigFileShape"
 mediatype="csv" csv.separator="," csv.withHeader="yes">

Greenfox – a schema language for validating file systems

176

 <targetSize count="1"
 countMsg="Config file missing"/>

 <!-- # Check - configured return codes expected? -->
 <xpath expr="//returnCode"
 inMsg="Config file contains unknown return code">
 <in>
 <eq>OK</eq>
 <eq>NOFIND</eq>
 <like>ERROR_*</like>
 </in>
 </xpath>
 </file>

 <!-- *** Request file shape *** -->
 <file foxpath="input\(*.xml, *.json)"
 id="requestFileShape">
 <targetSize
 minCount="1"
 minCountMsg="Input folder without request msgs"/>

 <!-- # Check - request with response? -->
 <foxpath
 expr="..\..\output*\file-name(.)"
 containsXPath=
 "$fileName ! replace(., '(.*)RQ(.*)$', '$1RS$2')"
 containsXPathMsg="Request without response"/>
 </file>

 <!-- *** Response file shape *** -->
 <file foxpath="output\(*.xml, *.json)"
 id="responseFileShape"
 mediatype="xml-or-json">
 <targetSize
 minCount="1"
 minCountMsg="Output folder without request msgs"/>

 <!-- # Check - response fresh? -->
 <lastModified ge="${lastModified}"
 geMsg="Stale output file"

 <!-- # Check - response non-empty? -->
 <fileSize gt="0"
 gtMsg="Empty output file"/>

 <!-- # Check - schema valid? (only if XML) -->

Greenfox – a schema language for validating file systems

177

 <ifMediatype eq="xml">
 <xsdValid xsdFoxpath="$domain\resources\xsd*.xsd"
 msg="Response msg not XSD valid"/>

 </ifMediatype>

 <!-- # Check - known article number? -->
 <xpath
 expr="//*:fooValue"
 inFoxpath="$domain\\codelists*.xml
 /codelist[@name eq 'foo-article']/entry/
@code"
 inFoxpathMsg="Unknown foo article number"
 id="articleNumberValueShape"/>

 <!-- # Check - return code ok? -->
 <foxpath
 expr="..\..\config\msg-config.csv\csv-doc(., ',',
'yes')
 //record[response eq $fileName]/returnCode"
 eqXPath="//
*:returnCode"
 eqXPathMsg="Return code not the configured
value"/>

 </file>
 </folder>
 </folder>
 </domain>
</greenfox>

B. Alignment of key concepts between greenfox and SHACL
This appendix summarizes the conceptual alignment between greenfox and
SHACL. The striking correspondence reflects our decision to use SHACL as a
blueprint for the conceptual framework underlying the greenfox language.
Greenfox can be thought of as a combination of SHACL’s abstract validation
model with a view of the file system through the prism of a unified value model
(XDM), supporting powerful expression languages (XPath/XQuery + foxpath).

The alignment is described in two tables. The first table provides an aligned
definition of the validation process as a decomposable operation as defined by
greenfox and SHACL. The second table is an aligned enumeration of some build-
ing blocks of the conceptual framework underlying greenfox and SHACL.

Greenfox – a schema language for validating file systems

178

Table B.1. Greenfox/SHACL alignment, part 1: validation model

Greenfox operation SHACL operaration
Validation of a file system against a
greenfox schema

Validation of a data graph against a
shapes graph

= Union of the results of the validation
of the file system against all shapes

= Union of the results of the validation
of the data graph against all shapes

Validation of a file system against a
shape

Validation of a data graph against a
shape

= Union of the results of all focus
resources in the target of the shape

= Union of the results of all focus nodes
in the target of the shape

Validation of a focus resource against a
shape = Union of the results of the vali-
dation of the focus resource against all
constraints declared by the shape

Validation of a focus node against a
shape = Union of the results of the vali-
dation of the focus node against all con-
straints declared by the shape

Validation of a focus resource against a
constraint = function(constraint param-
eters, focus resource, resource values)

Validation of a focus node against a
constraint = function(constraint param-
eters, focus node, property values)

Resource values = XPath|foxpath,
applied to a resource

Property values = SPARQL property
path, applied to a node

Table B.2. Greenfox/SHACL alignment, part 2: conceptual building blocks

Greenfox concept SHACL Remark
Resource shape:
• Folder shape
• File shape

Node shape Common key concept: shape = set
of constraints for a set of resour-
ces

Focus resource Focus node Common view: validation can be
decomposed into instances of val-
idation of a single focus against a
single shape

Target declaration
• Foxpath expres-

sion
• Literal file system

path

Target declaration
• Class members
• Subjects of predi-

cate IRI
• Objects of predi-

cate IRI
• Literal IRI

Difference: in greenfox a target
declaration is essentially a naviga-
tion result, in SHACL it tends to
be derived from class member-
ship (ontological)

Greenfox – a schema language for validating file systems

179

Greenfox concept SHACL Remark
Resource value Value node Common view: non-trivial valida-

tion requires mapping resources
to values

Mapping resource to
value:
• XPath expression
• Foxpath expres-

sion

Mapping resource to
property:

• SPARQL property
path

Common view: the mapping of a
resource to a value is an expres-
sion

Value shape:
• XPath shape
• Foxpath shape

Property shape Common view: usefulness of an
entity combining a single mapping
of the focus resource to a value
with a set of constraints for that
value

Constraint declara-
tion
• Constraint compo-

nent
• Constraint param-

eters

Constraint declaration

• Constraint compo-
nent

• Constraint parame-
ters

Common view: a constraint decla-
ration can be thought of as a func-
tion call

Constraint compo-
nent
• Signature
• Mapping semantic

Constraint component

• Signature
• Mapping semantic

Common view: a constraint com-
ponent can be thought of as a
library function

Validation report
• Constraint viola-

tions
• Constraint passes
• Observations

Validation report
• Constraint viola-

tions

Common view: a result is an RDF
resource; difference: in greenfox
also successful constraint checks
produce results (“green results”);
difference: in greenfox also obser-
vations can be produced, results
unrelated to constraint checking
(“blue results”)

Extension language:
• XPath/XQuery

expression
• foxpath expres-

sion

Extension language:
• SPARQL SELECT

queries
• SPARQL ASK

queries

Common view: extension of func-
tionality is based on an expression
language for mapping resources
to values and values to a result

Greenfox – a schema language for validating file systems

180

Greenfox concept SHACL Remark
Mediatype integra-
tion:
• Common data

model
• Common naviga-

tion model

- Difference: in contrast to SHACL,
greenfox faces a heterogeneous
collection of validation targets,
calling for integration concepts

C. Validation result model
This appendix defines the validation result model.

In the table below, the XML representation is rendered as an XPath expression
to be evaluated in the context of the XML element representing the result, which
is a <gx:red>, <gx:yellow>, <gx:green> or <gx:blue> element. Apart from the
result properties shown in the table, individual constraint components may
define additional properties.

Table C.1. The validation result model – RDF properties, description,
corresponding SHACL result property and XML representation.

RDF property Description SHACL result
property

XML representa-
tion

gx:severity The possible val-
ues:
• gx:Violation
• gx:Warning
• gx:Pass
• gx:Observatio

n
While
gx:Observation is
a value not related
to a constraint
check, the other
ones represent con-
straint violations or
a successful check

sh:severity Local name of the
result representing
element:
• red =

gx:Violation
• yellow =

gx:Warning
• green =

gx:Pass
• blue =

gx:Observatio
n

Greenfox – a schema language for validating file systems

181

RDF property Description SHACL result
property

XML representa-
tion

gx:fileSystem Identifies the file
system validated

An aspect of
sh:focusNode

ancestor::
gx:validation-
Report/
@fileSystemURI

gx:focusResource File path of a file or
folder resource

An aspect of
sh:focusNode

@filePath

gx:focusNode XPath of a node
within an XDM
node tree repre-
senting the con-
tents of a file
resource

sh:focusNode @nodePath

gx:xpath The XPath expres-
sion of a value
shape

sh:resultPath @expr or ./expr +
@exprLang=
"XPath"

gx:foxpath The foxpath
expression of a
value shape

sh:resultPath @expr or ./expr +
@exprLang=
"foxpath"

gx:value A resource value,
or single item of a
resource value,
causing a violation

gx:value @value or value
A value consisting
of several items is
represented by a
sequence of value
child elements

gx:valueCount Number of resour-
ces in a target, or of
resource value
items, causing a
violation

- @valueCount

Greenfox – a schema language for validating file systems

182

RDF property Description SHACL result
property

XML representa-
tion

gx:sourceShape The value shape or
resource shape
defining the con-
straint; the value is
the @id value on
the shape element
in the schema if
present, or a value
assigned by the
greenfox processor
otherwise

gx:sourceShape @resourceShapeID,
or @valueShapeID

gx:constraint-
Component

Identifies the kind
of constraint

sh:constraint-
Component

@constraintComp

gx:message A message com-
municating details
to humans; the
value is the @msg or
@...Msg attribute
or <msg> or
<...Msg> child ele-
ment value on the
shape or constraint
element in the
schema, or a value
assigned by the
greenfox processor.
In the above, … is a
prefix identifying
the constraint to
which the message
relates. Examples:
@minCountMsg,
@exprValueEqMsg.

sh:message @msg or msg + msg/
@xml:lang
A message with a
language tag is
represented by a
child element with
language attribute.

D. Note on the generation of resource values by expression chains
The recursive definition of resource values allows the construction of resource val-
ues through chains of expressions. When a chain is used, each combination of
items from all expressions except the last one is mapped to a distinct resource

Greenfox – a schema language for validating file systems

183

value, which itself may have zero, one or more items. As an example, consider a
first expression mapping a folder to a sequence of files, a second expression map-
ping each file to all <row> elements found in its node tree representation, and a
final expression mapping each <row> element to its <col> child elements. This
chain generates one resource value for each combination of file and row, consist-
ing of zero, one or more <col> elements. These values are resource values of the
folder to which the expression chain was applied.

Bibliography
[1] BaseX. 2020. BaseX GmbH. http:// basex.org
[2] Architectural Styles and the Design of Network-based Software Architectures.. 2000.

Roy Fielding. https://www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm

[3] FOXpath - an expression language for selecting files and folders.. 2016. Hans-
Juergen Rennau. http://www.balisage.net/Proceedings/vol17/html/
Rennau01/BalisageVol17-Rennau01.html

[4] FOXpath navigation of physical, virtual and literal file systems.. 2016. Hans-
Juergen Rennau. https://archive.xmlprague.cz/2017/files/
xmlprague-2017-proceedings.pdf

[5] foxpath - an extended version of XPath 3.0 supporting file system navigation.. Hans-
Juergen Rennau. 2017. https://github.com/hrennau/shax

[6] Greenfox - a schema language for validating file system contents and, by implication,
real-world systems.. Hans-Juergen Rennau. 2020. https://github.com/
hrennau/greenfox

[7] Shapes Constraint Language (SHACL). 2017. World Wide Web Consortium
(W3C). https://www.w3.org/TR/shacl/

[8] XQuery and XPath Data Model 3.1. 2017. World Wide Web Consortium (W3C).
https://www.w3.org/TR/xpath-datamodel-31/

[9] XML Path Language (XPath) 3.1. 2017. World Wide Web Consortium (W3C).
https://www.w3.org/TR/xpath-31/

[10] XPath and XQuery Functions and Operators 3.1. 2017. World Wide Web
Consortium (W3C). https://www.w3.org/TR/xpath-functions-31/

[11] XQuery 3.1: An XML Query Language. 2017. World Wide Web Consortium
(W3C). https://www.w3.org/TR/xquery-31/

Greenfox – a schema language for validating file systems

184

Use cases and examination of XML
technologies to process MS Word

documents in a corporate environment
Toolset to test and improve the quality and consistency of styl-

ing in MS Word
Colin Mackenzie

Mackenzie Solutions
<colin@mackenziesolutions.co.uk>

Abstract

In recent years XML has been replaced by JSON as the preferential format
of the API community and most non-SQL database vendors are not focused
on using XML for storage of non-tabular data. This has meant that the use
of XML and its accompanying technologies has retreated somewhat back to
its origin as a method of structuring and processing documents. The major-
ity of specialist XML developers using XML tools work within traditional
publishers, divisions of government or technical publishers successfully
delivering quality and diverse publications though complex workflows.
While the obvious preference is for authors to generate semantically rich
documents using XML editors, many of these XML publishers are faced
with converting and improving documents originated in MS Word and uti-
lize XML technologies as part of this process. But the majority of professio-
nal Word documents are not generated for publishers but instead are created
within corporate environments. If XML technology can be applied to this
problem space it could provide a significant boost to the continued adoption
of these technologies.

This paper will investigate some of the use cases for processing Word
documents found in the corporate environment (focusing on improving
quality) and will demonstrate using a toolset developed in XProc and
XSLT3 that open standard XML technologies can provide significant
advantages.

Keywords: XML, XSLT3, XProc, OOXML, Ms Word, Quality

1. The problem with styles and Word
There are few ubiquitous tools in IT, but Microsoft WordTM probably comes as
close as there is. With only a few exceptions (where a web-only deliverable means

185

the content is authored directly into HTML or where complex re-use and profes-
sional publication requirements mandates the use of XML) we all use Word to
author important documents. Whether the documents are internal reports, legal
contracts or consultancy proposals it is vital that the documents:
• reflect the latest corporate brand;
• are consistent with other documents being delivered;
• uses the agreed numbering system (via auto numbered paragraphs that can

be dynamically referenced and chapter/appendix prefixes);
• automatically create the correct table of contents (and table of figures/tables if

required);
• can be easily edited by others; and
• are able to have content extracted and re-used in other documents or libraries

of information.
This is only achievable in Word via the consistent use of styles in well managed
templates. However, even if your organization has developed and maintained
these templates, documents will frequently have their consistency (and therefore
quality) reduced due to:
• use of old templates;
• creation of Word documents from existing documents that do not use the lat-

est template;
• editing of the document outside of the organization-controlled environment

(e.g. sending contracts to “the other side”); and
• user error where formatting is applied manually (via buttons, format painter

etc.) or where ad-hoc styles are created and used.
It is vital that we do not underestimate the issue of user error. Most business
users are never trained in Word as, in its simplest form, it is so easy to use. But is
not easy to use Word in the right way to achieve consistency (especially in docu-
ments that require complex numbering and multi-level lists) even in the most
macro-heavy templated environment. Many of us have had to take over complex
Word documents from business users in order to try to decipher what has gone
wrong and make last minute edits before deadlines. In many other cases these
last-minute edits are made blind “I just changed things till it looked right” at the
cost of consistency and any other users of the document.

With typical Word workflows, errors in the styles being applied will directly
result in presentation errors in the final delivered documents (as the delivery for-
mat is Word or PDF). In more complex publishing workflows, the Word docu-
ments may be:
• converted and formatted using InDesign;
• converted to HTML for web publishing; or

Use cases and examination of XML to process MS Word documents

186

• converted to XML for enrichment and/or multi-format delivery.
In all of these more complex workflows the correct use of Word styles is pivotal to
the success of the process in order to convert, brand or structure the data appro-
priately with missing or misused styles leading to invalid or substandard content.

Typical issues include:
• application of styles to wrong content/in wrong order;
• use of manual mark-up instead of styles (or overriding styles to mimic other

styles);
• creation and use of unsupported styles (styles not defined in master template);
• use of out of date styles/templates;
• manual numbering (and chapter/appendix prefixing); and
• lack of metadata (missing or incomplete properties or fields).
So how do you know if your document has issues never mind being able to cor-
rect them? Lack of style consistency/quality across thousands of documents
would substantially increase the cost of any project designed to utilize that
library as a consistent data set (and may even call the financial viability of the
project into doubt).

2. Non-XML solutions
Despite the volume of licenses sold to the corporate market, Microsoft have not
really focused on providing product features to increase the quality/consistency
of styling in documents created by Word. While manual procedures are available
these are not ideal as manual means “subject to human error” and they do not tell
you if the latest/correct version of the style itself is in use.

Historically styling solutions were all based around macros/plug-ins within
Word or client-side automation using Word itself. Typical approaches taken to
ensure quality of styles mostly fall into the following categories:
• Template management: forcing the user to pick from one of a number of cen-

trally managed templates or auto-loading a central template from a network
drive when creating a new document.
• But what if the user opens an old document or one sent in from a third-

party and then saves it with a new name?
• Customized editing experience: providing custom ribbons and dialogue boxes

that aide the user by applying the correct style (somehow made more obvious
via an icon?) of the many approved styles to a given paragraph.
• But what if a user applies styles or formatting manually (if users are not

trained in Word they will almost certainly get little training in any add-
ons), does not apply any style or even does not enter content that is consid-

Use cases and examination of XML to process MS Word documents

187

ered mandatory in a given scenario (e.g. all groups of “Warning Paras”
must be preceding by a “Warning Title”)?

• Document analysis and repair – Provides reports on style use and a custom
user interface to allow users to manually apply a selected style to one or more
paragraphs. Some of these tools can also spot hard coded textual references
(e.g. “see clause 4.2” and replace them with dynamic Word cross references).
• Can the “rules” for the styles be easily kept up to date as the template(s)

changes?
Those who utilize these solutions find that over time there tends to be an issue
maintaining them. Issues have included:
• The solution no longer works since Word was upgraded (incompatible mac-

ros/plug-ins).
• The solution no longer works since the template was upgraded (the template

designer does not understand the style solution and IT do not understand
complex Word templates).

• Security changes (in Windows or in the organization) mean that the client-side
code no longer runs.

If the code that is trying to identify style issues and/or fix those issues also has to
contain the business rules then the process logic and business logic gets muddled.
Some tools utilize configuration files listing style names that are allowed and old
style names that should be mapped to the new style names. However, logic such
as “do not allow a ‘Clause Level 2’ unless it is preceded by a ‘Clause Level 1’” is
not easily expressed in a simple look-up table never mind more complex logic
that may look up multiple paragraphs in order to decide what is valid and may
also utilize text pattern matching (e.g. if a heading matches the pattern “Appendix
[A-Z]” then it should use “Appendix heading” style).

It would surely be preferable to utilize XML technologies to:
• Use a standard language to define what the rules are for the styling and con-

tent of a document (and how they can be fixed) in a way that supports the
maintenance of the logic separately from both Word and the program that uti-
lizes these rules.

• Check that the latest style and numbering definitions themselves are in use.
• Find a process that does not need to be installed on the client machine so it is

easier to maintain.
• Apply fixes wherever automatable.
• Report issues back to users using standard Word features.
• Provide reports on libraries of documents summarizing the level of compati-

bility to current style rules.

Use cases and examination of XML to process MS Word documents

188

3. A standards-based solution
In 2003 Microsoft created a public standard for an XML specification (Microsoft
Office XML) that could be imported or exported from MS Word 2003. For the first
time, developers could safely generate (or more easily adapt/transform) Word
documents outside of the MS Word application. This allowed automation solu-
tions to be developed for business challenges such as:
• conversion from Word to XML for publishers;
• creation of customized contracts (with appropriate clauses inserted based-on

information gathered) and whose style reflects the corporate Word template;
and

• personalized reporting/marketing material (e.g. “your pension performance
explained”).

The single file format became a favorite for XML developers to transform via
XSLT to whatever output was required but this approach was rarely adopted out-
side the publishing community or bespoke products.

Microsoft replaced that standard in later years with the ISO standard “Office
Open XML” (OOXML) ultimately becoming the default read and write formats
for MS Word (i.e. “.docx”). As most XML developers know, Docx files are a zip-
ped set of folders containing XML files for the text, style, comments (plus graph-
ics) required for a Word document. This new format allows developers to work
directly with the core document format of MS Word but needs the developer to
have the ability to “unpack” the files, update multiple files before repackaging as
a “.docx”. This meant many XSLT developers (as XSLT cannot yet open ZIP files)
stuck to the old format.

When investigating the suitability of the use of the latest XML toolsets for pro-
cessing Word, we decided to develop a solution for checking, reporting and fixing
Word issues. In order to have access to the complete Word data set, we decided to
use OOXML and therefore turned to XProc. XProc provides many built-in steps
that makes it perfect for processing Docx files. These steps include the ability to
unzip, validate, compare, merge and manipulate XML, transform via XSLT and
zip the results back to a “.docx” file.

Having dealt with the zipping and unzipping of documents, we needed a way
to check the consistency and quality of the document style and content. While it
is easy to validate the individual Word XML files against a schema (the “Office
Open XML” schema), this only checks that the XML structure within the file
matches what is expected but does not check compliance against any business-
specific rules such as style conformance or mandatory text content.

Fortunately, Schematron allows a document analyst to define whatever simple
or complex rules that are required to check the quality of a document and to pro-
vide information back to the business users on how to correct any issues. An

Use cases and examination of XML to process MS Word documents

189

example of a Schematron rule to test that a paragraph with a paragraph style
“Heading 3” must be immediately preceded by a paragraph with style “Heading
2” is as follows.

<sch:rule context="p:para[cm:getParaStyle(.)='Heading3'">
 <sch:let name="vPrecedingStyleName"
value="ms:getParaStyle(ms:getPreviousPara(.))"/>
 <sch:assert test="$vPrecedingStyleName ='Heading2'"
id="H3afterH2">Heading 3 must be immediately preceded by Heading2 (para
before actually has style '<sch:value-of select="$vPrecedingStyleName"/
>')</sch:assert>
</sch:rule>

As these rules are declarative and separate from any logic used to process the
Word file itself, a document analyst is free to develop and maintain these rules
without having to be an expert programmer. The Schematron format is an open
standard (with plenty of documentation and training material on the web) that
utilizes the XPath standard as the way to identify content in order to test its valid-
ity. Developers can simplify commonly-used complex paths by defining custom
variables or functions such as “getParaStyle”. These rules can check for the exis-
tence and validity of fields, metadata or that content of a certain type has text that
fits a particular pattern (using regular expressions). If required, a library of these
tests can be created and re-used as required.

Once a document has been processed by the tool, the errors or warnings from
Schematron are presented back to the user as Word comments (from pseudo
“Error” or “Warning” users) with the location of the comment providing the con-
text for the error. Users can utilize Word’s review toolbar to navigate their way
through the comments.

As you can see from Figure 1, errors can be reported not only on erroneous
application of styles or formatting but also where the text itself does not match
the “house style” for this sort of document (e.g. the use of punctuation in lists).

Once a user remedies the issue (e.g. by changing style to the correct style or by
moving an existing paragraph into the correct position) the file can be reproc-
essed allowing the existing errors/warnings to be stripped and any new or
remaining issues to be created as new comments. This is not the first solution to
suggest using Schematron with Office documents with author feedback provided
as comments (see [1]). Our goes further by:
• Implementing the process in XProc allowing further steps and options to be

developed;
• Focusing on business cases other than those of supporting XML conversion

from Word.
• Enhancing the usability of the feedback provided to the users.

Use cases and examination of XML to process MS Word documents

190

• Performing the checks on native “.docx” files.
• Detecting the type of document and selecting the correct Schematron rule files

to use to check that file (therefore supporting general rules, corporate rules
and template/content specific rules).

• Checking that the styles and numbering used in the document matches those
in a reference master style file.

• Providing options to strip existing user generated comments (important
before final delivery of a document) or to keep those comments.

• Running configurable pre and post quality XSLT transformation pipelines
based on the template used for the document.

• Providing users with a choice of fixes that can be manually applied or, in
some cases, automated during re-processing (in XSLT steps prior to checking
quality).

The ability to apply different quality check and resolution XSLTs per template
enables the solution to be run across a gamut of corporate documents types (and
versions of those templates) with different business rules per template but with-
out duplicating or disseminating logic. The format for the configuration files is as
follows.

<validateConfig>
 <entry default="true">
 <template>specification.dotm</template>
 <template>proposal.dotm</template>

Figure 1. Screenshot of document with Schematron errors

Use cases and examination of XML to process MS Word documents

191

 <schematron>testWordStyle.sch</schematron>
 <schematronFix>testWordStyleFix.sch</schematronFix>
 <pre-xslt>wordContentFixes.xsl</pre-xslt>
 <post-xslt>postFix1.xsl</post-xslt>
 <masterStyleFile>contractMasterStyles.xml</masterStyleFile>
 <masterNumberFile>contractMasterNumbering.xml</masterNumberFile>
 </entry>
 <entry>
 <template>contract.dotm</template>
 <template>contractNew.dotm</template>
 <schematron>testWordStyle2.sch</schematron>
 <schematronFix>testWordStyleFix.sch</schematronFix>
 <pre-xslt>preFix1.xsl</pre-xslt>
 <post-xslt>preFix2.xsl</post-xslt>
 <masterStyleFile>masterStyles2.xml</masterStyleFile>
 <masterNumberFile>masterNumbering.xml</masterNumberFile>
 </entry>
</validateConfig>

By providing the rules developer (and XSLT fix developer) with access to the
source document (plus the definition of its styles and numbering all combined
into one XML file) along with the master template’s styles and numbering, the
solution can try to ensure that not only is the appropriate style name being used
but that the style definition (and any associated autonumbering) matches the cor-
rect corporate standard. Errors that are not related to a particular line of content
(such as mismatch in the style definitions or in Word Properties) are added auto-
matically as paragraphs at the start of the file (see Figure 2).

Figure 2. Screenshot of style and metadata errors

While the content of styles (as opposed to the application of particular style
names to content) may not be important for those simply converting Word to
XML, for those use cases where the Word document will go on to be edited or
combined with other Word documents it is important that the style/numbering
information has not been overridden locally (in this para) or within the styles
defined in this particular document.

Further, where manual numbering has been applied, this can be identified
and suggestions made to the author as to what corporate styles are available that

Use cases and examination of XML to process MS Word documents

192

have numbering formats that match the manual numbers applied by the author.
This is shown in the Schematron rule below.

<sch:rule context="w:p">
 <sch:let name="vNumStr" value="ms:getManualNumber(.)"/>
 <sch:let name="vSuggestedStyleNames"
value="ms:getSuggestedStyleNames(.,$vNumStr)"/>
 <sch:report test="$vNumStr " id="ManualNumber1"
role="warning">Para seems to have manual number '<sch:value-of
select="$vNumStr"/>': consider replacing using styles <sch:value-of
select="$vSuggestedStyleNames"/></sch:report>
 </sch:rule>

This rule includes calls to some helper functions (provided with the solution) to
make the task of defining custom rules easier. The logic for the function to iden-
tify manual numbering (in this case looking for certain numbering patterns at the
start of the text followed by a tab) is relatively simple but ensures the analyst
does not need to have a deep knowledge of OOML. The logic to find suggested
style names based on the hard-coded numbering is much more complex and
would be beyond the ability of a corporate developer as it requires an in-depth
understanding of the list and style definitions within OOXML. As this code
dynamically checks what styles are recommended that meets the numbering
required, the code does not need to be updated as new styles/multi-level lists are
defined in the master template making maintenance much easier.

The XProc process also supports recording the quality of the document in an
XML log file so that an entire library of documents can be checked for style con-
formance which is especially important when beginning a new project that
requires consistency of content. The log(s) can be queried (e.g. using xQuery) or
transformed (e.g. for loading into Excel) to provide business intelligence on a
batch of documents.

<log date="2019-11-12">
 <entry stylesMatch="true"
 errorCount="4"
 warnCount="1"
 issues="H1notfirst H3afterH2 Bullet2 NumOne"
 warnings="NoI"
 filename="test.docx"
 startDateTime="2019-11-12T16:37:49.614Z"
 endDateTime="2019-11-12T16:37:49.621Z"/>

This XProc process can be invoked in a number of ways depending on the busi-
ness requirement and IT limitations:

• Run on current Word file from custom macro or Add-in to Word (with the sol-
ution client-side or posted to a server application).

Use cases and examination of XML to process MS Word documents

193

• Invoked from a workflow, content management or publishing solution as part
of a “check” stage using Java or by running a BAT file.

• Run from PowerShell when a file arrives in a specific network folder.
• Run from a Bat file on a hierarchical folder full of Word files.
• Run from XML processing tools such as Oxygen.

4. Providing fixes using a “QuickFix” like approach
We have already described how the solution provides Word users with visibility
of business logic errors that have been defined using Schematron and how nor-
mal development approaches (applying a configurable list of XSLTs to the entire
document) could be used to fix those errors. However, there are circumstances
where an interaction with the author is required in order to fix a problem in a
way that does not result in more work rather than less. If there is a rule where a
para with a “Heading 2” style must be immediately preceded by a “Heading 1”
(or another “Heading 2”) then a number of fixes are possible including:
• Insert a “Heading 1” before the current “Heading 2” ready for the author to

put in the main heading; or
• Change the current “Heading 2” to be a “Heading 1” (say if the preceding

para is not a “Heading1” already); or
• Change the current “Heading 2” to be a non heading paragraph.
It may be possible to determine the best approach (based on the styles of sur-
rounding paragraphs) but in many cases it is not possible. Fortunately, there is a
precedent for providing users with choices of fixes that can then be automatically
applied – Schematron QuickFix (SQF).

We considered defining fixes using the standard QuickFix grammar and then
include an existing QuickFix processor into our pipeline but decided for the ini-
tial solution to define and implement the fixes by dynamically calling functions
that abstract away the complexity of OOXML. The following code is the Schema-
tron for a “Heading 2” example that illustrates where XSLT can be embedded
(possibly an undocumented feature of the Schematron processor) to choose a fix
action or offers the choice to the user of multiple fix options.

<sch:rule context="w:p[ms:getParaStyle(.)='Heading3']">
 <sch:let name="vPrecedingStyleName"
value="ms:getParaStyle(ms:getPreviousPara(.))"/>
 <sch:assert test="$vPrecedingStyleName='Heading2'"
id="H3afterH2">Heading 3 must be immediately preceded by Heading2 (para
before actually has style '<sch:value-of
select="$vPrecedingStyleName"/>')
 <cmqf:fixes>
 <xsl:choose>

Use cases and examination of XML to process MS Word documents

194

 <xsl:when test="$vPrecedingStyleName='Heading1'">
 <cmqf:fix id="ChangeStyle-Heading2">
 <cmqf:description><cmqf:title>Change
style to Heading2</cmqf:title></cmqf:description>
 </cmqf:fix>
 </xsl:when>
 <xsl:otherwise>
 <cmqf:fix id="ChangeStyle-Heading1">
 <cmqf:description><cmqf:title>Change
style to Heading1 OR</cmqf:title></cmqf:description>
 </cmqf:fix>
 <cmqf:fix id="ChangeStyle-Normal">
 <cmqf:description><cmqf:title>Change
style to Normal</cmqf:title></cmqf:description>
 </cmqf:fix>
 </xsl:otherwise>
 </xsl:choose>
 </cmqf:fixes>
 </sch:assert>
 </sch:rule>

For the example where manual numbering was applied to a paragraph rather
than using one of the suggested styles that would achieve that numbering, we
would add fixes where we remove the manual numbering then additionally
apply a suitable style.

<sch:rule context="w:p">
 <sch:let name="vNumStr" value="ms:getManualNumber(.)"/>
 <sch:let name="vSuggestedStyleNames"
value="ms:getSuggestedStyleNames(.,$vNumStr)"/>
 <sch:report test="$vNumStr" id="ManualNumber1"
role="warning">Para seems to have manual number '<sch:value-of
select="$vNumStr"/>': consider replacing using styles <sch:value-of
select="$vSuggestedStyleNames"/>
 <cmqf:fixes>
 <cmqf:fix id="RemoveManualNumber">
 <cmqf:description><cmqf:title>Remove manual number
<xsl:value-of select="$vNumStr"/></cmqf:title></cmqf:description>
 </cmqf:fix>
 <xsl:for-each select="$vSuggestedStyleNames">
 <cmqf:fix id="ChangeStyle-{.}">
 <cmqf:description><cmqf:title>Change style to
<xsl:value-of select="."/></cmqf:title></cmqf:description>
 </cmqf:fix>
 </xsl:for-each>
 </cmqf:fixes></sch:report>
 </sch:rule>

Use cases and examination of XML to process MS Word documents

195

In order to provide the fix suggestions back to the user we again use the Word
comment facility by generating comments by a pseudo user called “Fix” where
the comment text makes sense to the user but also contains enough information
to allow the pipeline to implement the fix by dynamically constructing a function
call with suitable arguments.

Figure 3. Screenshot showing RemoveManualNumber fix

Figure 4. Screenshot showing ChangeStyle fix

In the examples shown in Figure 3 and Figure 4, the fixes will be applied using
two functions:
• “RemoveManualNumber” – this function will ensure that the manual number

is dropped from the text; and
• “ChangeStyle” – this function will change the style to the style name passed

as an argument (in this case “Clause1”).

Use cases and examination of XML to process MS Word documents

196

Other scenarios (e.g. adding punctuation to simple lists) will use other helper
functions provided with the framework (e.g. “AddText”) or new custom functions
defined by the client’s document analyst.

Word authors can still make any manual change required and simply delete
any “Fix” comment that is no longer applicable or is not their preferred option
(where there is a choice of fixes).

When the fixes are applied, any existing Schematron error/warning/fix com-
ments are dropped and the fixed document is revalidated by Schematron in case
any new issues have arisen.

If the user leaves these fix comments in place then reprocesses the document
though the solution, the following output would be achieved.

Figure 5. Screenshot of corrected document

5. Technical challenges and solutions
In this section, we will describe some of the approaches taken and difficulties
encountered when developing this solution.

5.1. XProc
While XProc provided all of the functions necessary for the unpacking and
repackaging of the documents there is an opportunity for the XML community to
improve documentation and examples to the level of those available for other
such technologies (e.g. there is no XProc book, documentation/examples for steps
like the zip/unzip steps could be improved for updates of existing archives). Lim-
itations of Xproc (that will be removed by XProc3) slowed development including

Use cases and examination of XML to process MS Word documents

197

the need for variables to be the first thing in a group, the lack of Attribute Value
Templates (AVT) to populate XML structures with XProc variables and especially
the inability to have anything other than atomic values in variables (e.g. to store
sequences of elements to iterate over or to pass to XSLT as parameters).

Debugging complex XProc can also be a frustrating process as run-time error
messages from Calabash have no line numbers and, in many cases, (e.g. where
the input to a step is required but for some reason is not present) there is no indi-
cation as to which of your custom steps is throwing the error.

Some tasks that seem easily achievable actually turn out to be a little more
complicated. One of the features of the tool is to optionally run a series of XSLTs
(that are named in the config file) before and after the Schematron processing
step. While it is easy to iterate over the XSLT filename list it is not trivial to then
pass the content through the dynamic pipeline (with the output of the previous
XSLT being the input to the next XSLT). While this challenge has already been
solved by and code provided via Open Source solution (see [2]), I wanted to
define my own solution (as an intellectual challenge and to make sure I could
easily change the functionality for my own use case). The answer, as is so often
the case in XSLT, is recursion where a custom step is called with the list of XSLT
filenames. The step will run the first XSLT in the list on the initial input XML and
then call itself passing the output of the step along with the XSLT filename list
minus the XSLT filename that has just been run.

5.2. XSLT

Despite the fact that XSLT3 has been a W3C recommendation since 2017, most of
our customers have not yet adopted it (many client developers do not yet fully
utilize the use of XSLT2 features such as functions). For my own project, I was
therefore keen to utilize XSLT3 for the transformations in the solution to evidence
it’s benefits to my clients. XSLT3 provides powerful new features such as stream-
ing, maps and support for non-XML sources and the following features were
appropriate for this solution.

XSLT3 supports the xsl:evaluate element that can dynamically evaluate an
XPath provided as a string. We used this capability for providing fixes via func-
tions (see Section 5.3) and also to evaluate the location paths for issues identified
by Schematron validation. These error location paths were dynamically evaluated
in order to identify on which Word elements we need to insert comment referen-
ces. Without the use of xsl:evaluate, previous XSLT2-based solutions have had
to process the SVRL (the XML format describing the Schematron errors and their
location) to create another XSLT (with matches for the defined location steps) to
achieve the same result. As the XPaths being evaluated are in this case limited to
those created by the SVRL, there is no danger of a security breach through an
injection attack.

Use cases and examination of XML to process MS Word documents

198

The use of {Attribute Value Templates} (AVT) has been expanded in XSLT3 to
support Text Value Templates (TVT) which aids the creation of clean minimal
stylesheet code. I did find whitespace handling limitations when TVT was used in
a function that returned a string (this was not a problem if the function were to
return an integer). This was encountered while trying to create a function that
uses TVT to create strings as IDs. This can be illustrated simply when comparing
the output of the following test functions.

<xsl:function name="ms:getInt" as="xs:integer">
 <xsl:param name="pElement" as="element()"/>
 {$pElement/position()}
 </xsl:function>

Returns “1”.
<xsl:function name="ms:getString" as="xs:string">
 <xsl:param name="pElement" as="element()"/>
 {$pElement/position()}
 </xsl:function>

Returns “&# xA; 1&# xA; ” which includes the whitespace used to format the
function that would not have been included had xsl:value-of been used instead
of the TVT. This is understandable as the rules as to what is significant white-
space are complicated and the TVT example certainly includes no elements to
help decide what is correct.

I also stumbled upon an obscure Saxon bug when experimenting with disa-
ble-output-escaping (DOE) where templates or the stylesheet had TVT turned on
(using expand-text="true"). In these cases, the TVT worked but the DOE did not.
Once reported, the issue was instantly diagnosed and kindly fixed by Michael
Kay2.

5.3. Dynamic calls to functions
As was briefly discussed in Section 4, we decided to implement the definition and
application of fixes using a new approach rather than implementing the Quick-
Fix3 vocabulary. While this may change over time, we decided to investigate the
suitability of applying fixes by calling user-defined functions dynamically using
the same xsl:evaluate approach we took when injecting Schematron errors into
the Word document from the SVRL output.

When a document that contains “Fix” comments is reprocessed by the solu-
tion, an XSLT (as configured in the config.xml for this particular Word template in
order to support difference in rules/fixes per document type) is run on the com-
bined Word content XML. The XSLT includes the main framework code that will

2See https://saxonica.plan.io/issues/4412
3See http://www.schematron-quickfix.com/

Use cases and examination of XML to process MS Word documents

199

invoke the fix functions along with the corporate/document specific fixes (or
included libraries of shared fixes). As the functions are invoked dynamically,
there is no need for a corporate user to ever have to edit the main framework
code to add calls to the function (as the function name and arguments are related
to the content via the Word comment injected by the fix mark-up and the func-
tions themselves are defined in the users own XSLT files). This will help avoid
errors and ensure easier upgrades by separating the fix from the core code espe-
cially if the core templates are moved into an XSLT3 package to avoid them from
being overridden.

An example of a fix function (and additional template matches invoked) to
change a paragraph style would be as follows.

<xsl:function name="ms:ChangeStyle" as="element(w:p)"
visibility="public">
 <xsl:param name="pOriginalElement" as="element(w:p)"/>
 <xsl:param name="pThisPara" as="element(w:p)"/>
 <xsl:param name="pToStyleId" as="xs:string"/>

 <xsl:apply-templates select="$pThisPara" mode="ChangeStyle">
 <xsl:with-param name="pToStyleId" select="$pToStyleId"
tunnel="yes"/>
 </xsl:apply-templates>
 </xsl:function>

 <xsl:template match="w:p[not(w:pPr)]" mode="ChangeStyle">
 <xsl:param name="pToStyleId" as="xs:string" tunnel="yes"/>
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <w:pPr>
 <w:pStyle w:val="{$pToStyleId}"/>
 <w:rPr>
 <w:lang w:val="en-GB"/>
 </w:rPr>
 </w:pPr>
 <xsl:copy-of select="* except (w:pStyle|w:ind)"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="w:pPr" mode="ChangeStyle">
 <xsl:param name="pToStyleId" as="xs:string" tunnel="yes"/>
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <w:pStyle w:val="{$pToStyleId}"/>
 <!-- currently we always remove any locally applied indent --
>
 <xsl:copy-of select="* except (w:pStyle|w:ind)"/>

Use cases and examination of XML to process MS Word documents

200

 </xsl:copy>
 </xsl:template>

A function to delete a paragraph would be much simpler (and even simpler with-
out error checking).

<xsl:function name="ms:DeleteCurrentPara" as="element(w:p)?"
visibility="public">
 <xsl:param name="pOriginalElement" as="element(w:p)"/>
 <xsl:param name="pThisPara" as="element(w:p)"/>
 <xsl:choose>
 <!-- simply return nothing -->
 <xsl:when test="$pThisPara/self::w:p"/>
 <xsl:otherwise>
 <!-- must have been used wrongly so just keep as is -->
 <xsl:sequence select="$pThisPara"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:function>

Fixes can be applied to a para or a sequence of elements (e.g. “runs” of text).
While the use of these functions could solve the majority of common styling

and content issues for corporate Word documents there is a limitation in that they
can only remove/change the content items that are passed to the function (and/or
insert new content before or after it). The functions cannot affect sibling content
or any other part of the document. This limitation can be partially avoided by
careful drafting of the Schematron rules to make sure the test is applied to the ele-
ment that needs to be fixed rather than on another element.

Running code that is generated via comment text dynamically using
xsl:evaluate could of course lead to run-time errors and attempts at injection
attacks. The framework code protects the pipeline from errors in user functions
(as much as is possible) by surrounding their invocation using xsl:try and
xsl:catch and testing that a suitable function with the correct number of argu-
ments can be found (using “function-available”). Injection attacks (potentially
caused by malicious editing of the function information in the fix comment) are
avoided as the code constructs the call to the user function carefully such that
only functions in the required namespace are called and that the only arguments
that are passed are strings (in addition to automatically generated standard argu-
ments of the original context item(s), and the current items(s) to be processed).

Note
If the function call being generated references a named variable or parame-
ter (e.g. “pOriginalElement” in ms:ChangeStyle($pOriginalElement, .,
'Heading1') then the xsl:evaluate will error unless the parameter is
additionally passed using xsl:with-param.

Use cases and examination of XML to process MS Word documents

201

<xsl:evaluate xpath="$vFunctionToRun" context-item="$pOutput[1]">
 <xsl:with-param name="pOriginalElement"
select="$pOriginalElement" as="element()" />
</xsl:evaluate>

5.4. OOXML

The greatest challenges developing this solution were caused by the complexity
of the OOXML format. To add a comment requires not just the creation of the ref-
erence in the document XML but also the creation of other referenced elements in
multiple other files. If the original source file had no comments then not only do
the supporting files have to be created but the package “rels” file also needs to be
updated to point to these new documents. Any bug in the core framework code
creating the word content can swiftly lead to a resulting document that cannot be
opened in Word or that could only be opened in repair mode (but with little
detailed feedback as to what the issue actually is).

Ideally, we would have created the error, warning and fix comments where
the only text was intended to be read by the user. Ultimately, we also had to
include the Schematron rule ID and the name/arguments of fixes. This was neces-
sary only because we could find no way of smuggling custom XML into the
OOXML in a way that Word would then successfully open the document and
keep the extra information. Processing instructions were dropped by Word.
While the OOXML specification supports the w:customXml element, Word itself
no longer supports this element (following a court case in 20094).

6. Conclusion
While it is perfectly possible to achieve many of the same results in C# or VB .Net
(especially using the Open XML SDK) a standards-based solution can be
deployed more flexibly anywhere from a local machine to a cloud-based service.
Further, developing using open standards inspires us to think of new standard-
based approaches that may not have been considered by desktop developers that
can deliver real business benefits. As the document quality directly depends on
input from the author it would be wise to consider linking solutions back to the
GUI to provide a more interactive experience while leaving the business rules
declared in XML, XPath and Schematron and not “spaghetti code” embedded in
templates. However, it should also be noted that most “Word template experts”
within corporate environment will typically be some combination of Word
“super-users” or macro developers and will not be familiar with XML (including
OOXML), validation and Schematron. This would mean that for the solution to be

4See https:// www.zdnet.com/ article/ microsoft-loses-its-appeal-in-200-million-plus-
custom-xml-patent-infringement-case/

Use cases and examination of XML to process MS Word documents

202

a success an extensive library of Schematron tests and fix helper functions cover-
ing most common scenarios would have to be developed then made available
along with some basic training.

By processing the native format (OOXML), the developer has full access to all
of the data rather than a subset of data provided by APIs therefore opening up
the opportunity for powerful applications, however with this power comes
greater complexity.

While the development of the particular solution discussed in this paper
would certainly have been easier using XProc3, this solution shows that it is pos-
sible to deliver powerful functionality in an easily extendable manner to process
MS Office documents using current open standard technology.

Bibliography
[1] Andrew Sales: The application of Schematron schemas to word-processing

documents, 2015 https://xmllondon.com/2015/presentations/sales
[2] Nic Gibson: XProc Tools. https://github.com/Corbas/xproc-tools

Use cases and examination of XML to process MS Word documents

203

https://xmllondon.com/2015/presentations/sales
https://github.com/Corbas/xproc-tools

204

XML-MutaTe
A declarative approach to XML Mutation and Test Management

Renzo Kottmann
KoSIT

<renzo.kottmann@finanzen.bremen.de>
Fabian Büttner

KoSIT
<fabian.büttner@finanzen.bremen.de>

Abstract

Correctness of XML language designs is important in XML based data
standardisation efforts. A general approach to testing of XML Schema and
Schematron designs is to write own test frameworks including a set of XML
instances to validate against the XML schema languages during develop-
ment.

We present a new integrated test approach. It combines three concepts
with a simple declarative language for annotating XML test instances.
Mutation is the first concept for automatically generating many new test
instances from a single original instance. The second concept of validation
with expectation compares each positive or negative validation result with
an expectation of a test writer. The last concept adds test metadata to XML
test instances without interfering with XML schema language design and
XML parsing. We also present XML-MutaTe as a prototype implementa-
tion that supports generation, execution and reporting of positive and nega-
tive test cases.

Overall, this approach and first implementation has the potential to pre-
vent the need for custom tailored XML testing frameworks. Therefore, It
simplifies test driven development of XML schema language designs for
XML based data standard development.

Keywords: XML, testing, schema, test, management, schematron,
generation

1. Introduction

Several aspects have to be taken into account for successfully testing XML schema
language designs expressed e.g. in XML Schema Definition Language (XML

205

Schema) [5] or Schematron[6]. From a test management perspective these aspects
are:
1. Generate test cases,
2. execute tests, and
3. summarize and report the outcome.

Currently, general practice is to implement custom test suits and frameworks
(like e.g. the test framework for XML Schema testing [4]) where often one test
case is equal to one XML instance. These frameworks often include custom scripts
to manage the test cases, chain up validators, and generate custom test reports. A
common variant is to additionally develop a custom XML language for defining a
domain specific language (DSL) for testing. The aims of these custom languages
include handling test metadata, provide test hints, configurations and commands.
Therefore, tests are either written as stand alone documents separated from the
XML instances under test or the XML instances are embedded in a custom test
language. This either has the disadvantage that the test specification is separated
from what is tested or that the XML instance is validated against a custom test
language. Moreover, current test frameworks are tailored for either XML Schema
or Schematron development but not for both. However, there are XML based data
standardisation efforts which use XML Schema to define general structure and
Schematron for expressing business rules.

In addition, a general shortcoming of many custom test frameworks is that
tests cases are mostly written for positive testing i.e. an XML instance is validated
against a schema language and expected to give a positive result. However, in
order to also make sure that a schema language excludes wrong data, it would be
of advantage to be able to write test cases for negative testing to make sure that
wrong or missing data is always detected.

We present a new integrated test approach with a simple declarative language
for annotating XML test instances with test metadata and instructions for auto-
matic generating new test instances and validating these against test outcome
expectations. We also present XML-MutaTe as a prototype implementation that
supports generation, execution and reporting of positive and negative test cases.

2. Integrated Test Approach
Test management is defined as part of a software testing process that includes
planning and generation of tests, their execution and storage and analysis of the
tests results. The integration into a single approach requires three combined con-
cepts.

2.1. Test Generation by Mutation
Automated test data generation is useful in order to minimize the effort to hand
write XML test instances. There are several tools available to generate XML

XML-MutaTe

206

instance documents based on a given XML Schema. These tools are very good in
generating random documents within the constraints of the XML Schema i.e. gen-
erating valid instances. On the other hand, the generated content is mostly not
very meaningful and does not necessarily reflect real world business require-
ments and business cases. Additionally, it is often important to test schema defini-
tions against invalid instances. Both, automatic generation and manual
generation of test instances are useful during initial development of XML Schema
definition languages as well as for further maintenance and enhancements.

Therefore, the concept of test generation by mutation allows generating new
test instances by applying changes i.e. evolving original XML test instance to a
new state. Each such a new state is named mutant and can either be a valid or
invalid XML instance.

The agents of defined mutation strategies are called mutators. There can be
many defined mutation strategies some of which can be classified as simple and
the others as arbitrary complex. Simple mutations are defined as a single syntac-
tic change to an attribute or element whatever the complexity of the element is.
This can also be referred to as atomic changes [3]. Some mutators generate many
mutations with a single atomic change per generated XML test instance.

There are several simple mutators:

Table 1. Mutators

Name #
Mutants

Description

empty 1 Deletes the text content of an element or attribute.
add 1 Adds an element or attribute.
remove 1 Removes an element or attribute.
rename 1 Renames an element or attribute.
change-text m Changes text content of an element or attribute.
whitespace m Exchanges text content of an element or attribute

with random whitespace content.
identity 1 Keeps element as is.
code m Exchanges text content of an element with a list of

code words one by one.
alternative m Uncomments each comment one by one. Allows to

e.g. test XML Schema choices [8].
random-ele-
ment-order

m Randomizes child element order of an element.

XML-MutaTe

207

More complex mutators can be based on execution of XSLT [2] which can per-
form many syntactic changes at once for example.

2.2. Validation with Expectations

The usual result of a validation is either true or false which is equal to valid or
invalid. However, one needs to be able to examine if a validation result is really
matching a certain business requirement. Hence, each test needs to be able to
answer the question: "Is the outcome of the validation as expected by the business
requirement?". The term expectation is used to differentiate this concept from -
and not to confuse it with - the more commonly used term "assertions" from e.g.
Schematron.

An expectation can itself be expressed as true (expectation is met) or false
(expectation is not met). Therefore, there a four possible test results for each sin-
gle constraint or rule w.r.t. the content of an XML test instance. According to a
business rule each validation procedure with an expectation does

• accept valid content as True Positive (TP)

• exclude invalid content as True Negative (TN)
and does not

• accept invalid content as False Positive (FP),

• exclude valid content False Negative (FN)

Table 2. Validation of expectation truth table

Validation Result/Expect-
ation valid invalid

valid + (TP) - (FP)
invalid - (FN) + (TN)

Validation result (column) versus expectation (row)

2.3. Declarative Annotation

A declarative annotation approach with XML processing instructions allows test
writers to generate a few original valid test instances which are designed by the
basic question "Does the XML Schema express everything for my business need?"
and annotate these with specific mutation instructions and expectations. A test
writer uses a mutation instruction to declare a certain mutation strategy which
should be applied to an original instance in order to generate new test instances
as variations of the original instance on the fly. Moreover, a test writer can also

XML-MutaTe

208

declare expectations about the validity of the mutated instances. And finally a test
writer can add metadata about the test case at hand.

3. Simple Mutation and Testing Language
The simple mutation and testing language for the declarative annotation of XML
test instances is designed as a simple list of configuration items within XML pro-
cessing instructions. Because processing instructions are in effect external to the
main structure of an XML document, they have no impact on the XML schema
languages. Processing instructions are also ignored by all XML processors by
default, except by specialized applications interpreting these.

3.1. xmute Processing Instructions
Only XML processing instructions with name xmute are processed and interpre-
ted.

The general data structure of an instruction is a list of configuration items
with the following key/value structure:key="value" as shown in this example:

<?xmute mutator="empty" schema-valid schematron-invalid="bt-br-03" ?>
<element>with text content</element>

All item keys are interpreted case-insensitive. Each item value must be surroun-
ded by quotes ". Sometimes the value to a key is optional and can be omitted.
This is demonstrated by the schema-valid key in the above example. By default
an xmute instruction refers to the next sibling XML element.

3.2. Mutations
One and only one mutator key(word) is mandatory where value is the name of
the mutator to be applied e.g. mutator="empty".

There might be additional key=value items configuring the behavior of the
mutator.

3.3. Test Expectations
Each mutant (i.e. mutated document) can be validated against XML Schema and
Schematron rules and compared to the expectations of the test writer.

3.3.1. Expectations on XML Schema

schema-valid and schema-invalid items declare expectations about the out-
come of an XML Schema validation on a mutant.

This allows to generate various tests about what an XML Schema should ach-
ieve.

XML-MutaTe

209

Example 1: Test optional elements
One possibility to test that an XML Schema correctly allows an element to be

optional is to remove an optional element from a valid XML test instance. Hence
we create a schema valid document with an optional element:

<element>element with content</element>
Then we can create a test case by annotating the XML test instance with an xmute
processing instruction using the remove mutator and declare that the resulting
mutant has to be schema valid:

<?xmute mutator="remove" schema-valid ?>
<element>optional element with content</element>

In case the XML Schema validation result is true, it will meet the expectation.
Hence, the test result will be positive, otherwise negative.

Example 2: Test required elements
In order to test that an XML Schema correctly requires an element to be

always present, we can again use the remove mutator and declare that our expect-
ation is that the XML Schema validation result will be invalid :

<?xmute mutator="remove" schema-invalid ?>
<element>required element with content</element>

In case the XML Schema definition still treats the element as optional, the valida-
tion result will be true, but it will not meet the expectation. Hence the test result
will be negative. Only after changing the XML Schema definition and force the
element to be required, the XML Schema validation result will be false, the
expectation will be met, and the test result will be positive.

3.3.2. Expectations on Schematron Rules

The configuration items schematron-valid="some-rule-id" and schematron-
invalid="some-rule-id" declare expectations about the outcome of Schematron
validations. The required value can be a list of space separated schematron rule
identifiers and an optional schematron symbolic name. In case one or more rule-
ids are listed, the expectations of only these rules will be evaluated. In case other
rules fire, they will not be reported by default.

Example 3: One simple rule
A single Schematron rule rule-1 requires that an element has to have text

content (independent of the above question if the element is optional or required
by an XML Schema) i.e. it will fire a fatal if element is empty. We can declare
another test case based on the previous example in the same document as fol-
lows:

Simple Example:
<?xmute mutator="empty" schema-valid schematron-invalid="rule-1" ?>
<element>element with content</element>

The empty mutator will generate a mutant similar to this one:
<element></element>

XML-MutaTe

210

It will meet the XML Schema expectation. But only if the Schematron rule-1 cor-
rectly fires a fatal message, it will also meet the schematron-invalidexpectation
and the whole test case will be positive. Otherwise the test case will be negative.

Example 4: Many complex rules
More than one rule can be declared:
<?xmute mutator="empty" schema-valid
 schematron-invalid="rule-1 rule-2 rule-3" ?>
<element>element with content</element>

In case a test case needs to validate against different schematron files, symbolic
names can be assigned to schematron rules:

<?xmute mutator="empty"
 schema-valid
 schematron-invalid="ubl:rule-1, ubl:rule-2, xr:rule-1"
?>
<element>with content</element>

Here, there are two rules from Schematron with symbolic name ubl and one
more rule with symbolic name xr. These symbolic names have to be defined as
input to an xml-mutate processor.

There are two special keywords for convenience: none and all the meaning is
defined as follows:

• schematron-valid="all"
• All rules are expected to be valid

• schematron-valid="none"
• None of the rules are expected to be valid

• schematron-invalid="all"
• All rules are expected to be invalid

• schematron-invalid="none"
• None of the rules are expected to be invalid i.e. schematron-valid="all"

3.4. Test Metadata

Three additional configuration items are defined to facilitate creation of test
reports with meatdata content.

The id configuration item identifies the test case and description allows to
document the purpose of the test case.

The function of the tags item is to allow arbitrary grouping of test cases and
selective execution of only certain test cases. A list of identifying keywords is
allowed.

XML-MutaTe

211

Example 1. Metadata annotation
<?xmute mutator="remove"
 schema-valid
 id="test-id"
 tags="mandatory simple"
 description="A description of the test case purpose."
?>

4. XML-MutaTe Prototype
A functional prototype implementation exists and is called xml-mutate for XML
Mutating and Testing. It is written in Java and has a command line interface and
writes a mutation and test report to console. The source code is available on
GitHub1.

The current version already makes test driven XML Schema and Schematron
development possible. This can be demonstrated by a real example which imple-
ments fictive business requirements on an XML design for book data. Assume the
development starts with two simple requirements:
1. A book must always have a publisher, and
2. A book must always have a number of chapters.

Then a concrete XML test instance can be written as follows:

<book isbn="1-861002-85-8">
 <title>Professional Java XML Programming</title>
 <?xmute mutator="remove" schematron-valid="publisher-exist"
 id="publisher-exist-test"
 description="Demonstrate that an Expectation is not met."
 ?>
 <publisher>Wrox Press</publisher>
 <price>35.99</price>
 <pages>772</pages>
 <?xmute mutator="remove" schematron-invalid="chapters-exist"
 id="chapters-exist-test" tag="mandatory,simple"
 description="All Expectations are met if chapters
 is removed then rule will detect it."
 ?>
 <chapters>13</chapters>
</book>

It includes two test cases written according to the Simple Mutation and Test-
ing Language. The first test case with id publisher-exist-test tests the first business
requirement. It declares a mutation where the element publisher is removed. It

1 https://github.com/itplr-kosit/xml-mutate

XML-MutaTe

212

https://github.com/itplr-kosit/xml-mutate
https://github.com/itplr-kosit/xml-mutate

also expects that the validation result of the schematron rule publisher-exist will be
valid. This test case is designed for the purpose of demonstration only. It showca-
ses the outcome if an expectation is not met and therefore raising the question if a
business requirement is correctly implemented. The second test case id chapters-
exist-test tests the second business requirement. It declares a mutation where the
element chapters is removed. It also expects that the validation result of the
schematron rule chapters-exist will be invalid. Therefore, it proofs the correctness
of the schematron rule which has to fire a fatal message if the element chapters
does not exist.

Development of Schematron rules can start with this simple book.sch:

<schema xmlns="http://purl.oclc.org/dsdl/schematron"
queryBinding="xslt2">
 <pattern id="model">
 <rule context="//book">
 <assert test="publisher" role="fatal" id="publisher-exist">
 A book must always have a publisher.</assert>
 <assert test="chapters" role="fatal" id="chapters-exist">
 A book must always have a number of chapters.</assert>
 </rule>
 </pattern>
</schema>

This Schematron implementation tests for each book element that a publisher
and a chapter element is present.

An execution of xml-mutate as follows:
java -jar xml-mutate.jar \
 -–schema book.xsd \
 --schematron book.sch \
 --target /tmp/ book-simple.xml
requires a book.sch and book.xsd as parameters. xml-mutate takes book-

simple.xml as input and processes all xmute instructions. It persists all generated
mutations in /tmp directory and generates the following report as console output:

XML-MutaTe

213

Figure 1. XML-MutaTe console output

As can be seen on the bottom line. Overall xml-mutate generated two more XML
test instances as mutations from the original XML test instance. One validation of
expectation passed and another one failed. Both mutations meet the expectation
that they validate against the XML Schema (column 4 and 5). The validation
result of the first mutation ([remove] 1) did not meet the schematron expecta-
tion. The schematron rule publisher-exist fired a fatal message (N for not valid in
column 7), but the expectation was that no message is fired (N in column 8). The
second schematron rule passed because all expectations are met. The schematron
rule publisher-exist fired a fatal message (N for not valid in column 7) and the
expectation was that a message is fired (Y in column 8).

The current status of implemented mutators is summarized in the following
table:

Table 3. Mutators implemented by XML-Mutate

Name Implementation status
empty available
add in planning
remove available
rename in planing
change-text available
whitespace available
identity available
code available
alternative available
random-element-
order

in planning

XML-MutaTe

214

5. Use Case: XRechnung Standard
The main incentive for developing XML-MutaTe originates from the XML based
data standard XRechnung [10]. Here, all requirements on an invoice are specified
in a national specification based on- and compliant to the European Norm
EN16931[11]. The European Norm did not invent an own XML Schema. It allows
the use of already existing XML Schemas for invoices such as the Universal Busi-
ness Language (UBL) [13]. This XML Schema defines the data structure of invoi-
ces, but not many rules on the specific content requirements. Therefore, the
EN16931 is accompanied by a set of Schematron rules implementing require-
ments on invoices for the European market[12]. In addition XRechnung is accom-
panied by an additional set of Schematron rules implementing national
requirements on invoices for the German market.

Technically, an invoice is an XRechnung only if it validates against all three
Schemas in that order:
1. XML Schema (e.g. UBL invoice)
2. EN19931 Schematron rules
3. XRechnung Schematron rules
Altogether, there are hundreds of Schematron rules. From a test management
perspective it requires to have many tests and many kinds of tests. On the small-
est test scope level it requires unit tests to make sure that e.g. each XRechnung
Schematron rule does what it is expected to achieve. Because of the more complex
validation setting, it also needs regression tests. These make sure that if some-
thing is changed in the XML Schema or EN19931 Schematron rules all require-
ments are still met and no unforeseen side effect breaks other existing rules. And
finally, it requires integration tests to make sure that any two rules do not contra-
dict each other.

The value of this approach can already be demonstrated with the use of the
simple empty mutator:

The deprecated XRechnung standard version 1.12 stated on p. 49f. that Busi-
ness Group (=Gruppe) "Seller Contact" should exist and have Seller contact
point BT-41, Seller contact telephone number BT-42, and Seller contact
email address BT-43. This is further expressed on p.65 with “BR-DE-5 Das Ele-
ment „Seller contact point“ (BT-41) muss übermittelt werden.”, “ BR-DE-6 Das
Element „Seller contact telephone number“ (BT-42) muss übermittelt werden.”,
and “BR-DE-7 Das Element „Seller contact email address“ (BT-43) muss übermit-
telt werden.”

This is expressed by the following Schematron rules on an UBL Invoice
(excerpt):

2 https://www.xoev.de/die_standards/xrechnung/xrechnung_versionen/xrechnung_version_1_1-15369

XML-MutaTe

215

https://www.xoev.de/die_standards/xrechnung/xrechnung_versionen/xrechnung_version_1_1-15369
https://www.xoev.de/die_standards/xrechnung/xrechnung_versionen/xrechnung_version_1_1-15369

<param name="BG-6_SELLER_CONTACT"
 value="//ubl:Invoice/cac:AccountingSupplierParty/cac:Party/cac:Contact"/>

<param name="BR-DE-5" value="cbc:Name"/>
<param name="BR-DE-6" value="cbc:Telephone"/>
<param name="BR-DE-7" value="cbc:ElectronicMail"/>

Obviously, the Schematron rules only require the element to be present even if it
has no content.

Now, we can use a positive example and use xml-mutate to check this issue.
We take a valid UBL Invoice and annotate it with the following declarations:

<cac:Contact>
 <?xmute mutator="empty" schema-valid schematron-invalid="BR-DE-5" ?>
 <cbc:Name>[Seller contact person]</cbc:Name>
 <?xmute mutator="empty" schema-valid schematron-invalid="BR-DE-6" ?>
 <cbc:Telephone>+49 123456789</cbc:Telephone>
 <?xmute mutator="empty" schema-valid schematron-invalid="BR-DE-7" ?>
 <cbc:ElectronicMail>test@test.de</cbc:ElectronicMail>
</cac:Contact>

XML-Mutate takes each declaration and mutates the document where the content
of the next element is made empty. Additionally, it expects to validate against
UBL XML Schema (keyword schema-valid) but it expects that the XRechnung
Schematron does not validate against specific rules (e.g. schematron-
invalid="BR-DE-5").

Therefore, the above xmute instructions test the business requirement that all
these elements should also have content.

The deprecated version of the above XRechnung Schematron rules did not sat-
isfy this business requirement which is technically expressed with declaration of
mutator="empty" in combination with schematron-invalid expectation. There-
fore, these three simple test cases discovered three bugs in the technical imple-
mentation of the business requirement. This was corrected in newer versions of
the XRechnung standard and the XRechnung Schematron rules.

Additionally, dozens of more such tests are declared in a single valid XRech-
nung test instance.

6. Discussion and Conclusion
The general advantage of this approach is that it prevents the need for developing
custom test frameworks. It only requires one tool, XML schema languages (XML
Schema or Schematron), and XML test instances annotated with rich test instruc-
tions using processing instructions otherwise ignored by any XML processing
tool.

Already now, the simple mutation and testing language seems to be feature
complete and allows declaring all what is needed for an integrated test approach.
Moreover, it is simple to add new features to this simple key/value based lan-

XML-MutaTe

216

guage. With a clear separation of the simple mutation and testing language from
the implementation, it is possible to implement alternative processors with differ-
ent feature sets and based on different programming languages and technologies.
Hence, making it possible that this approach becomes more widely accepted and
adopted.

Using only XML-Mutate makes it possible to minimize the number of test
instances while maximizing test coverage including negative tests. Already now,
it is possible to use XML-Mutate for unit-, acceptance- and regression testing.
Because all declarations are directly in the XML instances it allows test writers
looking at the data to declare that XML Schema and Schematron have to validate
according to the data at hand. Hence, this approach could be classified as a data-
driven-development framework. This is in contrast to a unit test and behaviour
driven development (BDD) framework such as XSpec for XSLT, XQuery and
Schematron[9]. XSpec has a code-centric perspective. That's why both approaches
complement each other.

Overall, this integrated approach and first implementation has the potential to
prevent the need for custom tailored XML testing frameworks and simplifies test
driven development of XML schema language designs for XML based data stand-
ards.

7. Outlook

The mutation and test approach is in its invention phase. Conceptually, it is possi-
ble to integrate computation and reporting of test coverage to better measure
indicators for estimating test quality and indirectly design quality.

On the implementation level, many features are on the road map. These
include Relax NG validation [1], customizable XML test instance file naming and
several more mutators such as a random element order generator.

Currently, the reporting capability is limited to a simple console output. In
order to allow rich reporting capabilities, Extensible Validation Report Language
(XVRL) [7] is under examination to be used as the standard report data format for
XML-MutaTe. This would clearly separate reporting data from presentation in
many different formats (HTML, PDF etc.) and allow developers to add own
reporting capabilities for individual requirements.

Bibliography
[1] Clark, James – Cowan, John – MURATA, Makoto: RELAX NG Compact Syntax

Tutorial. Working Draft, 26 March 2003. OASIS. http://relaxng.org/
compact-tutorial-20030326.html

[2] Kay, Michael: XSLT 2.0 and XPath 2.0. Wiley Publishing, 2008.

XML-MutaTe

217

http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html

[3] Standard Change Tracking for XML https://www.balisage.net/Proceedings/
vol13/html/LaFontaine01/BalisageVol13-LaFontaine01.html

[4] XML Schema Test Suite https://www.w3.org/XML/2004/xml-schema-test-
suite/index.html

[5] Gao, Shudi– Sperberg-McQueen, C.M. – Thompson, Henry S.: W3C XML
Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C
Recommendation, 5 April 2012. https://www.w3.org/TR/xmlschema11-1/

[6] Jelliffe, Rick. Schematron, 1999. Retrieved from http://xml.ascc.net/
schematron

[7] Extensible Validation Report Language. Retrieved from https://github.com/
xproc/xvrl

[8] XSD Choice. Retrieved from https://www.w3.org/TR/xmlschema11-1/#
element-choice

[9] XSpec. Retrieved from https://github.com/xspec/xspec
[10] XRechnung. Retrieved from https://www.xoev.de/de/xrechnung
[11] Electronic invoicing - Part 1: Semantic data model of the core elements of an

electronic invoice; German version EN 16931-1:2017. Retreived from https://
www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-
beuth:din21:274990963

[12] Validation artefacts for the European eInvoicing standard EN 16931. Retreived
from https://github.com/ConnectingEurope/eInvoicing-EN16931

[13] Universal Business Language Version 2.1. 04 November 2013. OASIS Standard.
http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.html.

XML-MutaTe

218

https://www.balisage.net/Proceedings/vol13/html/LaFontaine01/BalisageVol13-LaFontaine01.html
https://www.balisage.net/Proceedings/vol13/html/LaFontaine01/BalisageVol13-LaFontaine01.html
https://www.w3.org/XML/2004/xml-schema-test-suite/index.html
https://www.w3.org/XML/2004/xml-schema-test-suite/index.html
https://www.w3.org/TR/xmlschema11-1/
http://xml.ascc.net/schematron
http://xml.ascc.net/schematron
https://github.com/xproc/xvrl
https://github.com/xproc/xvrl
https://www.w3.org/TR/xmlschema11-1/#element-choice
https://www.w3.org/TR/xmlschema11-1/#element-choice
https://github.com/xspec/xspec
https://www.xoev.de/de/xrechnung
https://www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-beuth:din21:274990963
https://www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-beuth:din21:274990963
https://www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-beuth:din21:274990963
https://github.com/ConnectingEurope/eInvoicing-EN16931
http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.html

Analytical XSLT
An Analytical Approach to Writing XSLT Transformations for

Converting Documents Between DTD Versions
Liam Quin

<liam@fromoldbooks.org>

1. Abstract
People working with large XML vocabularies occasionally face the task of
upgrading to a new version of a vocabulary. A similar situation arises when
documents must be exchanged with an organization using a different version of a
vocabulary. This paper describes an effective computer-aided approach to writing
transformations in XSLT to convert documents to conform to a slightly different
version of a DTD; similar techniques apply for arbitrary schema languages with
caveats noted in the text. A tool to assist in this process is also described.

2. Introduction
Writing an XSLT transformation to process documents written in a large XML
vocabulary can be a daunting task. Every element in the input must be handled,
along with all of its attributes. When the task is to convert from one version of a
vocabulary to another, one must also examine the destination vocabulary. For
vocabularies represented by XML document type definitions this means compar-
ing two DTDs.

An obvious approach to people with a background in programming is to
automate as much as possible the tedious task of comparing element declarations
to see what changed between two versions of a DTD. Since DTDs are stored in
files one might try a text comparison utility such as Unix diff, but this turns out to
give misleading results since it is not aware of file structure: not only inclusions,
but, more importantly, conditional sections.

A program that uses an XML parser to read the two DTDs and then compare
the resulting data structures is fairly easy to write, and has been done several
times in the past [see references]. Although the existing DTD comparison tools
are not without problems, at least some of them are open source and could be
patched (or forked, if necessary). But it turns out that this is a journey in an inap-
propriate direction.

An analyst looking at this problem wants higher-level tools to help with the
task. The author of this paper wrote Eddie 2 in order to approach this sort of
problem, and has now used this tool for a number of projects. But what matters
here is not the specific tool so much as the approach, and why recording the dif-
ferences between two grammars, although necessary, is not sufficient.

219

This paper first reviews some of the existing DTD comparison tools, then
briefly describes Eddie 2 to give the reader necessary context. We will then be
ready to discuss the difference in approach: rather than using a DTD comparison
to form the basis of an XSLT stylesheet, the analytical approach is to write a new
stylesheet informed by a tool that detects not only differences but incompatibilities.
The generated XSLT stylesheet is not edited itself, but is used as a tool for analy-
sis.

It is the contention of the author that this methodology is effective; that is not
to say that it could not be improved, and sharing this methodology more widely
and inviting feedback is a step in that direction.

3. Existing Tools For Comparing DTDs
When a DTD is all contained in one file, and does not use conditional sections,
inclusions, or extended comments, a text-base file difference utility goes a long
way. On the other hand, if your single DTD file is a “flattened” copy of DocBook
or BITS, the result may take you hours or days to process by hand. Putting each
declaration on one line and sorting the results before using diff might help, espe-
cially if you then sort the elements in repeatable or-groups within content mod-
els. But you are working at the textual level and not thinking about the actual
problem, which can be a distracting impediment.

Specialized tools for comparing DTDs and schemas exist. These may view the
DTDs as grammars and list differences, or may be more text-based. A drawback
of textual comparisons is that the large and complex DTDs for which tools are
most useful tend to make heavy use of parameter entities and conditional pro-
cessing, so that two elements might have the same textual content model but
because of differing parameter entity expansions actually be very different.

3.1. DTD Diff
Early on, there was a tool for comparing two SGML DTDs written by Earl Hood
[ref1]; this used a regular-expression-based parser written in Perl by Norm Walsh,
DTDParse. This was updated to parse XML, although it does so from an SGML
perspective, potentially leading to subtle bugs. The version the author of this
paper tested did not work correctly on the JATS DTDs, but, to be fair, neither
does the author’s own tool, Eddie 2, described later in this paper. It provides a
very simple line-oriented output; it was easier to write a new SAX-based applica-
tion than to parse the output of DTD Diff.

3.2. DTD Comparator and DtdAnalyzer
The American National Center for Biotechnology Information/NLM/NIH (NCBI)
offers a set of Java-based tools that use a native XML parser to produce an XML

Analytical XSLT

220

representation of a DTD and that can produce a summary of differences, includ-
ing sample XSLT.

Although there seem to be some bugs (and no work of humankind is without
flaw), these could be fixed—an obvious one is that DTD Comparator does not
sort the elements in or-groups, so that if all that has changed is the order, spuri-
ous differences appear to be generated. However, DTD Comparator was the most
promising of the tools the author surveyed. The author of this paper does make
use of the DTD Flatten utility in this package, as Eddie 2 works correctly when
given a flattened DTD (that is, a DTD with parameter entities expanded).

DTD Comparator can create an XSLT stylesheet with the intent that you use it
as a starting point for editing. Although this sounds useful, it has the drawback
that you can't rerun the program after a small change to a DTD, once you have
edited the stylesheet. Like Eddie 2, DTD Comparator produces an HTML report,
but it is not designed for continuous use as part of a methodology. It is this funda-
mental underlying difference that led the author of this paper not to pursue con-
tributing to the DTD Comparator project.

3.3. Style Studio

The Stylus Studio XML editor includes a visual mode for mapping from one XML
schema to another. The result of this is Java code which, when executed, will per-
form the appropriate transformation when run in the company's proprietary
database environment. This does not seem to be a productive way to write XSLT,
although the visual comparison might be useful for those who can decipher it.

4. Eddie 2
The author had specific needs that none of the existing tools seem to meet:

• Generate XSLT with a template for each element containing, in comments, the
differences between the two DTDs;

• Identify cases where an instance of an element conforming to the input DTD
would not, if presented in situ in the output DTD, with no other change except
possibly to its namespace URI, be valid;

• Help an XSLT developer to identify the most common problem areas and
address them quickly;

• Generate and maintain a list of elements that the stylesheet author has not yet
handled.

Although the DTD difference tools mentioned in the previous section could be
part of this, they are not the whole solution. Their focus is on identifying differen-
ces at a moment in time, not on a process of developing a transformation.

Analytical XSLT

221

The author wrote a new program to meet these needs, or at least to explore
how to meet them: Eddie 2; this does not preclude merging with another tool in
the future, but Eddie 2 was working well enough to use after a few hours. The
main difficulty is always with XML Catalog files! Eddie 2 has since been devel-
oped further, when it became clear to the author that the approach was viable.

What follows is a brief overview of Eddie 2 as it currently stands; after that we
can discuss how the tool supports an analysis-based methodology.

4.1. Eddie 2 Overview

The Eddie 2 program reads a configuration file (and also command-line options)
uses an XML parser to construct a simple stub document with given public and
system identifiers and to use this to load a DTD for each of input and output
vocabularies. It then generates:
• An HTML report, with CSS and JavaScript to make it usable (for example, you

can type any letter to scroll directly to the first element starting with that let-
ter, and HTML content models are “pretty-printed” with parenthesis match-
ing);

• An XSLT stylesheet with a template for each element; the template by default
copies the element to its output (optionally discarding namespace nodes), and
includes comments that show the respective content models and attribute dec-
larations and that highlight likely incompatibilities.

4.1.1. The Generated XSLT Stylesheet

Eddie 2 writes an XSLT stylesheet that declares namespace bindings declared in
its configuration file and then contains a template for every element in the source
DTD.

For each element, the default behaviour is to create a template that will pro-
duce a message if a potential incompatibility with the destination DTD is detec-
ted. For example:
• an element in content that does not occur at all in the target DTD;
• an element that occurs in the target DTD but is not allowed as a child of this

element;
• an attribute that is not allowed on this element in the target DTD;
• an attribute that has a value that is not allowed on this element in the target

DTD—for example an unknown value from an enumeration, or a CDATA-val-
ued attribute that is not equal to a #FIXED value.

Figure Figure Fig 1 shows an example template generated by Eddie 2 for a trans-
formation between two different DTDs each based on a different version of JATS.

Analytical XSLT

222

<xsl:template match="role">
 <!--* Notes from Eddie2
 * children of element role differ:
 * in src not dest: index-term, index-term-range-end. inline-media
 *
 * role: Or-groups with different children
 * src: (#PCDATA|email|ext-link|uri|inline-supplementary-material|
 * related-article|related-object|hr|bold|fixed-case|italic|
monospace|
 * overline|overline-start|overline-end|roman|sans-serif|sc|
strike|
 * underline|underline-start|underline-end|ruby|alternatives|
 * inline-graphic|inline-media|private-char|chem-struct|inline-
formula|
 * tex-math|mml:math|abbrev|index-term|index-term-range-end|
 * milestone-end|milestone-start|named-content|styled-content|fn|
target|
 * xref|sub|sup|x)*
 * dst: (#PCDATA|email|ext-link|uri|inline-supplementary-material|
 * related-article|related-object|hr|bold|fixed-case|italic|
monospace|
 * overline|overline-start|overline-end|roman|sans-serif|sc|
strike|
 * underline|underline-start|underline-end|ruby|alternatives|
 * inline-graphic|private-char|chem-struct|inline-formula|tex-
math|
 * mml:math|abbrev|milestone-end|milestone-start|named-content|
 * styled-content|fn|target|xref|sub|sup|x)*
 *
 * Attributes in source but not destination:
 * degree-contribution CDATA #IMPLIED
 * vocab CDATA #IMPLIED
 * vocab-identifier CDATA #IMPLIED
 * vocab-term CDATA #IMPLIED
 * vocab-term-identifier CDATA #IMPLIED
 *
 * Destination attributes:
 * content-type CDATA #IMPLIED
 * id ID #IMPLIED
 * specific-use CDATA #IMPLIED
 * xml:base CDATA #IMPLIED
 * xml:lang NMTOKEN #IMPLIED
 *-->
 <xsl:copy>
 <xsl:apply-templates select="@*" />

Analytical XSLT

223

 <xsl:if test="index-term">
 <xsl:message>role: role contains child index-term
 not in destination DTD</xsl:message>
 </xsl:if>
 <xsl:if test="index-term-range-end">
 <xsl:message>role: role contains child index-term-range-end
 not in destination DTD</xsl:message>
 </xsl:if>
 <xsl:if test="@degree-contribution">
 <xsl:message>role: element role has attribute @degree-contribution
 not in destination DTD</xsl:message>
 </xsl:if>
 [. . . more tests omitted for publication. . .]
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
</xsl:template>

Figure Fig 1. Fragment of an XSLT stylesheet produced by Eddie 2

It’s possible to supply condition-message pairs for a given element by editing the
configuration file; by default Eddie 2 generates the messages shown in the figure.
It is also possible to change the default action from using xsl:copy to using xsl:ele-
ment, in order to avoid copying namespace nodes. It is not currently possible to
customize the template further, however: the intent is that if you want to edit it,
you mark it as “manual” in the configuration file, in which case the comment will
be generated but no actual template. The reason for this is that the intent is that
eddie2.xsl is imported into the actual stylesheet you are running. The comments
make it easy to copy a template into your own stylesheet and change it; they alert
you to conditions you might have to deal with in your new template.

Although the incompatibilities will all be spotted by DTD validation of the
output, generating the warnings in XSLT allows them to be more specific. Two
important aspects are firstly that the XSLT processing does not halt on an error, so
that a complete list is generated, and, more importantly, the messages are in the
domain of the input DTD, not the output. For example, if twelve templates all
generate the same result element, validation of the result does not show where
the faulty element was generated.

The Eddie 2 configuration file, then, can contain an override for any given ele-
ment that can:

• Give a list of XPath expressions and warnings (a sort of simple Schematron-
like process)

• Specify how the element is to be handled: one of:

• Delete the element and its children;

Analytical XSLT

224

• Expunge the element: delete it and its children, and ignore it for the purpo-
ses of content model comparisons;

• Copy the element, with default incompatibility warnings included;
• Manual: the element is handled in the main XSLT stylesheet and does not

need to appear in the generated stylesheet.
It should be stressed that the XSLT stylesheet generated by Eddie 2 is intended to
be imported into a hand-written stylesheet during the analysis phase; it can be
used to provide initial templates (copied into the main “first” stylesheet by hand
currently) but at the end of the analysis phase it is no longer used. Elements
marked to be deleted in the configuration file should be matched in an empty
template in the main stylesheet so as to be explicitly ignored.

The eddie2.xsl file, then, is an analysis tool. When input files are transformed
by a stylesheet importing eddie2.xsl, messages produced by xsl:message will warn
about likely problems. These messages can be sorted in order of frequency, so
that after a few cycles of running the transform, dealing with the most common
messages, editing the configuration file appropriately, and repeating, all available
sample files will validate according to the target DTD. This turns out to be much
more efficient than using an XML validator on the output, because the messages are
in the source domain, not the target domain. For example, instead of, element city not
allowed at this location, the message might be, conference-loc contains city element not
allowed in destination; this is particularly useful when combined with custom
errors.

4.1.2. The Generated Report

A screen-shot of a Web browser displaying part of an Eddie 2 report is given in
Figures Figure 2 and Figure 3. In this example the source and destination ele-
ments have the differing content models and also differ in attributes, and these
differences are highlighted. The check-marks on the right show elements that are
configured; the grey element names are the same in content model and attributes
in both DTDs. The screenshot has been separated into two parts for ease of print-
ing, but of course is part of a single continuous HTML document that covers
every element in the source DTD.

In the report, the light blue background indicates the destination DTD, and
the yellowish background the source. In the source content model, elements not
available in this element in the destination are given in grey. The list of elements
on the right-hand side is a scrollable index; elements that are the same, or that
have been configured, are in grey text. A check mark (✔) indicates that the ele-
ment is configured and an ✖ indicates that it is not included in the Eddie 2 con-
figuration file. Hovering over a checkmark gives hover text to describe its
configuration. Typing the first letter of an element scrolls both the index and the
report itself to the first element starting with that letter.

Analytical XSLT

225

Figure 3 shows how attributes are reported, using both text and colour to
describe the differences in the DTDs. One important point to note is that Eddie 2
reports differences such as where a default value changed, or where an attribute
has a FIXED value in one DTD and not the other.

Not shown in the figure is that the content models are interactive in the
report: hovering (or touching) within a parenthesized group shows the open and
close parentheses connected by a dotted line. This is illustrated statically in Figure
Figure 4. In addition, hover-text further clarifies the status of each element men-
tioned, and of course the element names are themselves links to their correspond-
ing sections in the report.

Note that Eddie 2 is aimed at people writing XSLT to convert from one DTD
to another; it is not aimed at people developing the DTDs. It does not show
parameter entities, for example, and does not show which parameter entities a
content model uses, nor which ones contain a reference to a given element.

The report shows both source and destination content models; this can be useful if,
for example, a repeatable or-group in one DTD is a sequence in another, even if the
allowed child elements are the same.

Figure 2. Eddie 2 Report: Screenshot (first part)

Analytical XSLT

226

Figure 3. Eddie 2 Report: Screenshot (second part)

Notice the two vertical lines of dots connecting a line in the element declaration
with the line containing a matching parenthesis. The lines are shown only when the
mouse pointer is over the parenthesized group (or when a mobile user touches that
area), to avoid excessive visual clutter in complex content models.

Figure 4. Eddie 2 Report: Content model highlighting

Analytical XSLT

227

4.2. Eddie 2 Plugins
A feature under consideration is support for external plug-ins; these can cur-
rently inject XSLT into the template for a given element, or for any element with a
given attribute and/or child element. For example, a JATS Date plug-in could
detect any element with both a year child and an ISO-format date attribute and
generate XSLT to handle various cases of source and destination needing one or
the other (or both). They might also inject icons into the scrollable index; see
under Further Work below.

Along with a facility to rename elements, the date feature blurs the boundary
between analysis and development and, although useful, is therefore experimen-
tal.

4.3. Eddie 2 in Use
The idea is that you write a stylesheet that imports the Eddie 2 XSLT; when you
are finished with it, you remove the import, or make it conditional with an XSLT
3 use-when stylesheet parameter (which must be declared as static). Your style-
sheet should also contain an identity transform at the start, or should use a
default mode in XSLT 3 with on-no-match set to shallow-copy (which essentially
does the same thing).

5. Discussion
In a way, Eddie 2 is not so different from other tools in this space. Even though
the author was unaware of DTD Comparator when writing Eddie 2, there are
some strong similarities. However, there are also differences, the most significant
of which is a difference in approach.

One difference is the idea that Eddie 2 generates a stylesheet that pro-actively
helps the developer, not by being an initial starting point but by being a continu-
ously-updated configured part of analysis. This is where the term An Analytical
Approach originates: instead of going through two DTDs element by element, an
experimental approach is used of running sample documents and fixing the prob-
lems to get the majority of the way very quickly. Because the Eddie 2 configura-
tion file can be updated as elements are handled, the index in the report is also a
to-do list of things not yet considered.

Another part is the focus on the source domain: an edit-run-validate cycle pro-
duces messages in terms of the output, not the input. An Eddie
configuration/run/review cycle produces messages in terms of the input, and
hence in terms of what needs to be done to the XSLT transformation under devel-
opment.

Analytical XSLT

228

Experience suggests that using a tool such as Eddie 2 not only speeds up
stylesheet development but also improves quality, by helping the developer to
catch important cases.

6. Where Eddie 2 Does Not Help, and Future Work
Not all differences are measured by validation alone. DTD validation in particu-
lar is weak for finding transformation problems because it ignores actual content.
A transformation which must change dates from American month/day/year for-
mat to day/month/year or international year-month-day may produce plausible
but incorrect output, particularly for the first twelve days of each month. Good
tests, perhaps with XSpec, can help, as can Schematron content rules; a RelaxNG
or W3C XML Schema can also supply extra rules that help validation.

Sometimes elements change meaning more subtly. The term van in America
describes a somewhat different sort of vehicle than the same term in the UK, and
SUV is similarly somewhat different, so that the same vehicle might be in one cat-
egory in one country and the other when it crosses the Atlantic. Such differences
cannot be automatically detected without additional external infrastructure, and
there is a real danger that a developer will skip over them.

To try to mitigate against the dangers of poor ontology matching in this way, a
future version of Eddie 2 may be able to display or link to vocabulary documen-
tation directly; this would be a good use of a plugin architecture.

Currently, although Eddie 2 works fine with DTDs thatuse parameter entities,
a limitation in the XML parser that was used means DTDs must first have param-
eter entities expanded (flattened). A future version will use a different XML
parser; the one selected had working XML Catalog support, wich remains a
requirement. Note that in older SGML and XML projects it was common to sup-
port configurable element content models, so that a parameter entity in an actual
document could change the grammar. There are currently no plans to support
this in Eddie 2. However, vesitigal support is in plave for reporting on parameter
entities used within content models, and this will probably be expanded in the
future.

The author has also experimented with coverage reports by making Eddie 2
parse the manually-edited primary XSLT file and detect elements that have corre-
sponding templates. Unfortunately this is, and will always be, unreliable: tem-
plate match patterns are too powerful, and XPath expressions used in the select
attributes of xsl:for-each or xsl:apply-templates are even harder: working out
which elements are matched in general is equivalent to solving the halting prob-
lem, which is not possible. So a simpler approach is to read the XSLT stylesheet
and report on which elements have templates that clearly match them, and to
support a way of telling Eddie 2 that a particular template matches a particular
set of elements. But at that point the value becomes unclear, compared to editing

Analytical XSLT

229

the Eddie 2 configuration file; the main value is detecting discrepancies, places
where a user edited the configuration file to say an element has been handled but
then forgot to handle it, or made a typo in the element name. Eddie 2 does detect
typos in element names in the configuration file, but not currently in the XSLT.

A future version of Eddie 2 may also accept XML Schemas (RNG or W3C) as
input.

Eddie 2 is currently on gitlab, with access available on a limited bases,
although that version does not support plugins or other experimental features, in
order to prevent future compatibility issues.

7. Conclusions
By analysis-driven development the author of this paper means to suggest a process
that is focussed on quantified analytical investigation and supporting tools. The
idea is to work as much as possible in the problem domain and stay above imple-
mentation details as much as possible, without compromising quality.

Measurements have suggested that for a reasonably large vocabulary such as
a customized version of JATS or BITS, the majority of a transformation can some-
times be completed in only a few hours, leaving only the content-based changes
to handle. This compares favourably to the task of reading two versions of a DTD
of course, but also compares well to experience with using other tools: the combi-
nation of domain-centered messages and a frequently-updated coverage report is
very powerful.

Eddie 2 does not have any code in it that is specific to any particular DTD;
writing an XSLT transformation using an analytical approach does not depend on
the grammar in any way, although the larger the DTD and the more test files that
are available, the greater the value of this approach.

Although Eddie 2 builds on many past ideas, the process of Analysis-based XSLT
supported by tools is new. The tools mentioned in the paper are easily found;
Norm Walsh may have given a paper at an SGML conference about his
DTDParse; Earl Hood added the DTDDiff part and that was in part an inspiration
for this work. The DTDDiff utility was alreay in use in 1999.

DtdAnalyzer was written at the USA National Center for Biotechnology Infor-
mation (NCBI), a part of the National Library of Medicine (NLM) and described
in a 2012 paper at JATS-Con given by Demian Hess, Chris Maloney and Audrey
Hamelers.

Analytical XSLT

230

XSLT Earley: First Steps to a Declarative
Parser Generator

Tomos Hillman
eXpertML Ltd

<tom@expertml.com>

Abstract
Invisible XML [2] is a method for taking any structured text that can be
parsed using a grammar, and treating it as XML. It allows the XML tech-
nology stack to be leveraged outside of XML structures.

For Invisible XML to be useful in pure XSLT transforms, a grammar-
based parser available in XSLT is required: examples illustrating this are
given. Parser-generators that provide parsers as XSLT are available, but
they don't create parsers that work in the XSLT programming idiom, and
can't parse ambiguous grammars.

An interpretation of the Earley [1] parsing algorithm may solve both of
these problems: an Earley parser can parse any context-independent gram-
mar, including any that may be ambiguous; it has also been suggested that
the "Earley items" created as part of a parse operation can be reconfigured
into a tree structure [5], which naturally lends itself to processing with
XSLT.

This paper aims to lay the ground-work for producing a parser generator
that creates XSLT which can parse string inputs given an EBNF-like gram-
mar. Examples from previous papers on the topic will be used to manually
create both an XML representation of the grammar, and the desired tree
structure of Earley items. In turn, these should inform what an XSLT
parser for that grammar should look like.

Finally the paper will discuss how the resulting parser can be abstracted
and extended so as to parse using an arbitrary grammar, to use other gram-
mar languages, and to investigate the possibility of generator for XSLT
based parsers.

Keywords: XSLT 3.0, Earley, Invisible XML

1. Introduction
This paper is a continuation of the work in papers on Invisible XML and the Ear-
ley parser, particularly [3] and [5]. It attempts to demonstrate an implementation
of the Earley algorithm [1] - or something very close to it - using the declarative
programming idiom of XSLT rather than its traditional, procedural form.

231

The proof of concept that the paper aims to introduce is limited to a single
pre-defined grammar; however it's hoped that this will form a groundwork for
producing parsers and parser generators that can use not only any grammar, but
grammars formed using a range of grammar languages, such as BNF and EBNF.

1.1. Invisible XML
Invisible XML was introduced by Steven Pemberton in his 2013 paper at the Balis-
age conference [2], and specified online [6].

It states that since all data is an abstraction, content can be equivalently
expressed in a number of ways, including using XML. A simple piece of pseudo-
code like:

Example 1. Proposed input
{a=0}

can be expressed without losing pertinent information in an XML format such as:

Example 2. Desired Output
<program>
 <block>{
 <statement>
 <assignment>
 <variable>
 <identifier>a</identifier>
 </variable>
 =
 <expression>
 <number>0</number>
 </expression>
 </assignment>
 </statement>
 }</block>
</program>

This is the example we will use to create our parser; it is taken from the slides of
[3]

Expressing these data in an XML format allows us to use the XML technology
stack to process them using tools like XQuery, XSLT, Schematron, and XSpec. For
many who already have existing XML resources and expertise, this not only
allows for employee proficiencies and reuse of systems, but also works within the
declarative idiom.

Invisible XML also describes annotations to create attributes rather than ele-
ments, and to reduce those elements created in the parse tree that don't add

XSLT Earley: First Steps to a Declarative Parser Generator

232

meaning to the content but are an accident of the grammar formulation. Recreat-
ing these isn't a primary goal of this paper, but doing so shouldn't present great
technical difficulty.

1.2. Why Use XSLT based Parsers?

There are several features of Invisible XML that offer opportunities to process any
data expressed in structured text. These can include documents (like Relax NG
Compact, DTDs, XQuery, CSS, MarkDown, YAML, JSON, CSV, etc.), or formats
embedded in XML (like path definitions in SVG, XSLT match patterns, or XPath
statements).

Where these data are already being processed by XSLT - such as exports from
content management systems, or rules based validation such as Schematron - it
makes sense that an XSLT based parser can be used without introducing any new
technological dependencies.

A useful example would be in rules-based validation; [4] gives the example of
validating SVG paths, which use structured text within an attribute:

Example 3. An SVG Path [4]

<path d="M100,200 C100,100 250,100 250,200 S400,300 400,200"/>

Usually, checking the content of such an attribute value would be achieved by
regular expression matching and checking. This is often the quickest and simplest
solution, and it might be the best solution for simple structured text examples.
Sometimes, however, even quite straightforward structured text grammars can
require quite complicated and opaque regular expressions, leading to complex,
verbose code which is hard to read and maintain.

An Invisible XML approach not only provides validation through successful
parsing of the structured text, but also allows validation of specific data and rela-
tionships within and between both XML and non-XML structured text. Kosek
was able to demonstrate the ability to extend Schematron by including a parser
based on the grammar of these paths as an XSLT inclusion, checking both validity
via parse-ability:

Example 4. Schematron rule testing SVG Path validity [4]

<sch:rule context="svg:path">
 <sch:report test="p:parse-svg_path(@d)/
 self::ERROR">
 <sch:value-of select="p:parse-svg_path(@d)"/>
 </sch:report>
</sch:rule>

XSLT Earley: First Steps to a Declarative Parser Generator

233

as well as more specific rule constraints, such as ensuring paths are contained
within a defined coordinate space:

Example 5. Schematron rule testing path coordinate ranges [4]
<sch:rule context="svg:path">
 <sch:let name="path"
 value="p:parse-svg_path(@d)"/>
 <sch:assert
 test="every $c in $path//(signed-coordinate |
 unsigned-coordinate)/number
 satisfies abs(number) le 1000">
 </sch:assert>
</sch:rule>

Having the parser available as XSLT therefore empowers developers who use
any of the tools in the XSLT tool chain.

The other possibility that an XSLT parser allows is that of an extensible parser:
this is discussed in more detail below.

1.3. Why not LL1 Parsers
There is a limited availability of XSLT based parsers; at the time of writing, there
is one well known parser generator which can produce a parser in XSLT from
EBNF grammars: [7].

Whilst this freely available tool has been invaluable in enabling approaches
like the one above, it has a few limitations. One of these is that the parsers pro-
duced by [7] are LL1 or similar based parsers, and can't parse all possible context
free grammars. In particular, they cannot parse ambiguous grammars; those which
potentially allow for multiple valid parsed results, or multiple parsing routes
resulting in the same results.

Example A.1 chosen for this proof of concept was chosen precisely because
the grammar chosen won't work with LL parsers [3]: the first available symbols in
assignment and block are both identifier, and therefore the grammar is
ambiguous. It is perfectly possible in this case to rewrite the grammar so that it's
not ambiguous through some clever abstractions, but this means that:
• using grammars may not be possible without careful editing;
• editing of the grammars may not be obvious, straightforward, or result in a

concise representation of the underlying concepts;
• some grammars may not be used at all.

1.4. Writing Extensible Parsers
There is another limitation to using the [7]: the parser that it produces is not only
an LL1 parser, but one that produces hundreds of state transitions that are

XSLT Earley: First Steps to a Declarative Parser Generator

234

designed to be understood by its generated functions, rather than by a human
developer. Because the code that is produced is impenetrable to ordinary
humans, it is impossible for a human developer to take it and extend it to deal
with extra features, let alone doing so applying the inherent approaches and
strengths of XSLT.

The XSLT idiom involves match templates, "apply template" operations and
native sequences. The procedural idiom of LL1 parsers involves passing state
objects between functions. As well as being hard to understand, the latter is
almost impossible to extend using XSLT's native import and precedence features.

Consider a proposed XSLT based parser for DTD documents. The DTD lan-
guage is hard to process because it mixes a relatively simple EBNF grammar for
the syntax with a mechanism for macro substitutions. It is easy to parse the gram-
mar, but there is no way for EBNF to convey the meaning of entities and their
expansions: entities will be treated as just another structure in the parse tree,
without parsing any of the data which they represent. Expanding and including
the entities would involve recursive operations on the results of each parse.
Better approaches may involve parsing the entities as they are defined, and

including the results in the resulting parse tree; doing so would mean extending
the generated parser with some bespoke code. One of the goals of this paper is to
establish whether (or not!) it is possible to write a generated parser that would
allow extension using the well established XSLT methods of doing so: over-riding
templates in including stylesheets, priorities, and use of instructions like
xsl:next-match or xsl:apply-imports.

1.5. The Earley Parser (very) briefly explained

The Earley parser is known as a chart parser: it works by compiling an intermedi-
ate data structure, originally conceived as a chart or set of Earley Items. Each of
these items represents a step in a partial parse, evaluating one rule of the gram-
mar on a defined sub-string. The real trick of the algorithm is that most of the
useless partial parses are avoided altogether.

The process of (or function for) creating items is called the recogniser. This cre-
ates a number of item(s) consisting of the following information fields:
• The current state; the state is a representation of how much of the original

string has been parsed (or how much of the string remains to be parsed).
• The current rule being evaluated; a rule consists of one symbol on the left hand

side, which can be decomposed into a sequence of terminal (literal strings and
keywords) and nonterminal symbols; the latter are nonterminal because they
refer to other rules, and other sequences of possible symbols.

• The position within the rule; this is often given as markup in a representation
of the rule itself, such as:

XSLT Earley: First Steps to a Declarative Parser Generator

235

block → "{" ◆ statements "}" (1)

where the term before the arrow represents the symbol, terms to the left of the
◆ character represent rule definitions which have already been processed, and
terms to the right those which have yet to be processed.

• The start state; that is, the state that was current when the processing of the
current symbol and rule began.

The initial Earley item is normally defined by the grammar (often by convention
as being the first rule in the grammar); the rest of the items are generated from
existing ones according to the type of symbol to the right of the ◆ character:

Completion If there is no next symbol, the rule has been completed. If there is
a parent item, they can be advanced by a symbol and added in
the current state.

Prediction If the next symbol is a nonterminal symbol, we review our set of
items to see if the nonterminal has already been processed in the
current state.

If it has, we don't need to add any items by processing it
again: this not only improves efficiency by avoiding repetition/
replication, but avoids a possibility of an infinite recursion.

If the nonterminal has not been processed, we add the corre-
sponding rule to the set, starting at the beginning symbol as may
be expected.

Scan If the next symbol is a terminal symbol, we check to see if it
matches the corresponding yet-to-be-parsed sub-string in the
input.

When a match is achieved, we can advance to the next symbol,
as well as advancing the current state.

When a match is not achieved, the rule has failed, and no fur-
ther items are created from the current rule.

In this way, Earley items are added to the set until there are no more symbols left
to resolve, or until there are no more items to add in the final state (i.e. the state
representing the end of the parsed string). If there exists an item in this final state
that is complete and started in the initial state, we know that we have found a
valid parse.

Creating the parse tree can then be achieved simply by following the trail of
items from this final item to the first, discarding any which are incorrect, incom-
plete or which do not contribute. Terminals form the leaf nodes, and Nontermi-
nals form the containing branch nodes.

XSLT Earley: First Steps to a Declarative Parser Generator

236

1.6. Macro Substitution

As previously discussed, there is another desirable property that would be useful
in an extensible parser: the ability to handle macro substitution (such as DTD
entity resolution) as part of the parse. While the implementation of such a feature
is not the goal of this paper, establishing the possibility is.

It is perhaps not immediately apparent whether or not this is even possible:
the effect is that the string to parse will be altered by the act of parsing itself.

The concept of the state of the parse in the Earley algorithm is often defined
using character positions in the string. Clearly, this method will not support live
changes to the input string whilst parsing! However, it seems reasonable that
other methods of denoting the state ought to be possible: at any given point in the
parse, what the state really needs to tell you is what is (or was) coming next (for
the purposes of the next scan operation). The only other requirement is consis-
tency in that all references must point to the same state.

2. Methodology
The essential approach is to take a grammar expressed in an XML syntax, and a
string to parse. The parser works by transforming the grammar with the string as
a parameter.

The proof of concept parser is available to view on github at https://
github.com/eXpertML/XMLPrague2020/blob/master/Parser/EarleyParser.xsl. This
paper will restrict itself to discussing some of the more pertinent design choices.

2.1. Choosing a Grammar Language

There are a number of grammar languages in widespread use, many based on the
Backhaus-Nauer Format. Variants can be seen in use in specifications for many
XML technologies, including the W3C specifications.

For this paper, Invisible XML was chosen because of the following characteris-
tics:

• It includes optional and repeating definitions from EBNF, which make it much
easier to write than standard BNF.

• It has an XML representation (see [6]), which makes it perfect for use with
XSLT without having to bootstrap with another parser.

• It includes options which define the XML representation - which symbols rep-
resent elements, which attributes, and which can be omitted from the result
tree altogether.

The last point alone makes Invisible XML uniquely suitable for the task.

XSLT Earley: First Steps to a Declarative Parser Generator

237

https://github.com/eXpertML/XMLPrague2020/blob/master/Parser/EarleyParser.xsl
https://github.com/eXpertML/XMLPrague2020/blob/master/Parser/EarleyParser.xsl

In practice, a proof of concept did not require every feature of Invisible XML
to be implemented at this time: attribute handling, for instance, is not required to
handle our example, but should be trivial to implement in the future.

2.2. Determining the Earley Objects
Creating a sequence of Earley items was not strictly necessary, but was certainly
helpful in understanding the Earley algorithm, and the resulting Earley trees.

A partial set of Earley items illustrating the complete parse is included in the
appendix of this paper under the Table of Earley Items.

2.3. The Earley Tree
Defining the Earley Tree transpired to be a more interactive process than was ini-
tially envisioned, as it became apparent which information was necessary to the
XSLT parsing algorithm, and how that was best represented. However, the basic
principle remained the same: terminal symbols become text nodes; the nontermi-
nal symbol on the left hand side of a grammar rule becomes a containing element;
the right hand side becomes a sequence of contained nodes.

Since Invisible XML grammars will result in arbitrary element names, a name-
space was chosen for most nodes in the intermediary Earley tree:
xmlns:e="http://schema.expertml.com/EarleyParser".

Invisible XML defines the starting rule as the first in the grammar [6]; this
ensures that the entire Earley Tree is contained in a single root element, thus
obeying XML well formed-ness.

Originally, elements in the Earley Tree were envisioned to be the final ele-
ments returned at the end of the parse. Ultimately it became apparent that writ-
ing templates to convert the Earley Tree to successful parse results would be
easier to match a single element, e:rule.
Attributes are used to store useful information during the parse: @state and

@ends are both space separated list of states where the evaluation of the rule in
question can be said to begin and finish, respectively. The XML serialisations are
also preserved in an optional @mark. The creation and use of some of these attrib-
utes will be examined in more detail later in the paper.

Since it is a truism that the first rule will never have already been matched in
the initial state, we can create the root element of our Earley Tree:

<e:rule name="program" state="1" ends="0" >...</e:rule>

A rule in the Invisible XML Grammar can contain a number of alternative formu-
lations. For these we recycle the elements alts and alt as e:alts and e:alt,
respectively. Note that e:alt can only ever have other e:alt elements as siblings;
the containing e:alts element is used to enable this restriction where alternatives

XSLT Earley: First Steps to a Declarative Parser Generator

238

are required within the rule definitions. The same structures can be used to cap-
ture state ambiguities, i.e. when it there is more than one viable starting state
resulting from the preceding parse operations:

<e:alts state="3 4 5" ends="0">
 <e:alt state="3">
 <e:fail state="3" string="}"/>
 </e:alt>
 <e:alt state="4">
 <e:fail state="4" string="}"/>
 </e:alt>
 <e:alt state="5">...</e:alt>
</e:alts>

Where a specific e:alts element needs to be referred to (we'll see why later),
it can be given a generated id stored in the @gid element.

Optional elements are handled as an alternative using an e:empty element;
this is a leaf node of the Earley Tree (i.e. an element which is empty):

<e:empty state="2"/>

Terminal symbols that successfully match are captured in an e:literal element;
this allows for parse metadata to be captured in the same attributes as for the
nonterminals in e:rule, and also has the benefit of avoiding the need for mixed
text processing. An attribute @remaining is also used in the current implementa-
tion, which stores the new unparsed string that results after the terminal symbol
has been matched:

<e:literal state="1" ends="2" remaining="a=0}">{</e:literal>

Terminal symbols that do not successfully match return the e:fail element; these
currently include diagnostic attributes @string and @regex to show the failed
match:

<e:fail state="3" string="("/>
<e:fail state="5" regex="^([0-9]).*?$"/>

These should be the last sibling children of their parents, as processing should not
continue after a failure.

Non terminals are checked to see whether they have already been evaluated
in the current state. If they have not, a new e:rule element is created. If they
have, and evaluation ended in a failure, then an e:fail element is created. If the
rule has already been evaluated, a place-holder reference is created, detailing all
possible end states:

XSLT Earley: First Steps to a Declarative Parser Generator

239

<e:nt state="2" ends="3" name="identifier"/>

2.4. State References
All possible states are stored as a sequence of strings: states are then referred by
the integer corresponding to their index in that sequence. The first string in the
sequence is always the complete initial string; a subsequent state corresponding
to the string $required can then be added simply whilst avoiding duplicates:

($states, $remaining[not($remaining = $states)])

Similarly, the state reference number can be retrieved using:

index-of($states, $remaining)

There is one special case: the state corresponding to the empty string, which
represents a complete parse of the entire input string: this is represented by the
pseudo-index 0.

Note
Although this will normally be the case, there is no requirement that the
state resulting from matching a terminal or nonterminal be a substring of
the previous state: this allows for the possibility of parsing macro/entity
substitution at a later date.

2.5. Tracking Visited Nonterminals
As has been discussed in Section 1.5, it is essential to differentiate between non-
terminals which have already been visited in the current state, and those which
have not.

When we find a nonterminal that has already been visited, it is also conven-
ient to know the corresponding end states that will result from that segment of
the parse.

To do this, we require another data structure, indexed by both nonterminal
and by state number. This is implemented using XSLT 3.0 maps and stored as the
tunnel parameter $visited:

{
 "program": {
 "1":""
 },
 "letter": {
 "2":"3",
 "3":""

XSLT Earley: First Steps to a Declarative Parser Generator

240

 },
 "identifier": {
 "2":""
 },
 "block": {
 "1":""
 }
 ...
}

The structure is a map of maps indexed by either nonterminal name or generated
id (the latter being used in the case of e:alts). The keys of the interior maps cor-
respond to the states where the nonterminals have been matched, and their val-
ues (if present) to the possible end states should those nonterminals complete.

These maps can be conveniently serialized (e.g. to JSON1) for debugging pur-
poses.

2.6. Controlling the Process Order

By now one of the primary challenges of creating the Earley Tree becomes appa-
rent: each node that is created depends on the data structures for the states and
visited nonterminals that are calculated from the preceding node. The usual
approach of applying templates passes information from parents to children, not
from preceding to following node.

Circumventing this default behaviour requires a replacement mechanism for
xsl:apply-templates. Using a named template seems the obvious choice, since
it allows us to preserve the context: e:process-children. We'll also need to
define the $children of the template as a parameter, defaulting to the children
nodes of the context element.

We can apply templates to the first sibling child of $children, storing it in a
variable $first and then returning it as the first result of the sequence. If $first
returns e:fail, or if there are no subsequent nodes in $children, then we can
stop processing. Otherwise, new state and visited parameters can be calculated
and passed as the children nodes to a new instance of the template, until the last
of the original sibling nodes has been processed.

2.7. Dealing with Repetition: repeat0
Optionally repeating elements can be handled by simply re-writing them as a
choice, much as suggested in the [6]:

1Other serialisation options are available, and - with a good Invisible XML parser - can be treated as
XML! :)

XSLT Earley: First Steps to a Declarative Parser Generator

241

<xsl:variable name="GID" select="(@gid, generate-id(.))[1]"/>
<xsl:variable name="equivalent" as="element(alts)">
 <alts gid="{$GID}">
 <alt>
 <empty/>
 </alt>
 <alt>
 <xsl:sequence select="(child::*[not(self::sep)], sep)"/>
 <xsl:copy>
 <xsl:attribute name="gid" select="$GID"/>
 <xsl:copy-of select="@*, node()"/>
 </xsl:copy>
 </alt>
 </alts>
</xsl:variable>

It might seem that a redefinition which contains itself like this would cause
infinite recursion; however, recall that we can use generated IDs in the $visited
parameter. By using the same check that we do for nonterminals, we can ensure
that the interior repeat0 is only run in the case where the state has changed; i.e.
we only repeat processing if there is a match in the initial sequence.

2.8. Dealing with Repetition: repeat1
Now that we have a definition for an optionally repeating element, we can use it
for a similar re-write for repeat1:

<xsl:variable name="equivalent" as="element()*">
 <xsl:sequence select="(child::*[not(self::sep)], sep)"/>
 <repeat0 gid="{generate-id(.)}">
 <xsl:sequence select="*"/>
 </repeat0>
</xsl:variable>

2.9. Pruning the Earley Tree
Converting the Earley Tree into one (or more) parsed result trees is now relatively
straightforward; any element in the Earley Tree with a zero-length value of @ends
(or where the element is missing entirely), or which contain e:fail can be sup-
pressed. Other elements are processed as follows:
e:rule[not(@mark)] Each rule is replaced with the name of the symbol.

Alternative children are processed as for e:alts.
e:rule[@mark eq '-'] The containing element is skipped. Alternative chil-

dren are processed as for e:alts.

XSLT Earley: First Steps to a Declarative Parser Generator

242

e:alts Templates are applied for each of the children alter-
natives, but only the children of the first are
returned.

e:alt[not(e:fail)] Templates are applied to the children elements; if no
elements are returned, nor is the containing e:alt.

e:nt References to nonterminals in a given state are
replaced with the results of pruning the correspond-
ing e:rule in the Earley Tree

e:literal Literal strings are replaced with their string values.
For this proof of concept, it is enough to return the first viable result. However it
should be possible to return a sequence of valid results for ambiguous grammars,
should this be desirable.

Similarly, in the event of no complete parse, it should be possible to either
return an error, or a partial parse. This proof of concept does the latter.

2.10. Results
The parser is largely successful, being able to parse the specified string in the
chosen grammar:

Example 6. Results of parsing {a=0}
<program>
 <block xmlns:e="http://schema.expertml.com/EarleyParser">{
 <statement>
 <assignment>
 <variable>
 <identifier>a</identifier>
 </variable>=<expression>
 <number>0</number>
 </expression>
 </assignment>
 </statement>
 }</block>
</program>

Compared to the desired output, there remains only an extraneous namespace
node on /program/block which should be possible to remove given a little more
work.

In fact, it is possible to parse other strings in the grammar:

Example 7. Results of parsing {while a do b=5}
<program>
 <block xmlns:e="http://schema.expertml.com/EarleyParser">{

XSLT Earley: First Steps to a Declarative Parser Generator

243

 <statement>
 <while-statement>while
 <condition>
 <identifier>a</identifier>
 </condition>do
 <statement>
 <assignment>
 <variable>
 <identifier>b</identifier>
 </variable>=
 <expression>
 <number>5</number>
 </expression>
 </assignment>
 </statement>
 </while-statement>
 </statement>
 }</block>
</program>

3. Conclusions

3.1. Proof of Concept
The parser works for certain strings, and proves the concept of an XSLT based
Invisible XML parser.

It is not a complete Invisible XML implementation: some XML serialization
options are not fully implemented, and therefore does not yet work for the gen-
eral case of either the input string or the grammar.

3.2. Earley enough?
The algorithm used by the parser is inspired by the Earley parser, but it has not
been shown to be equivalent.

Functions to calculate the state sequence or map of visited nonterminals mean
that elements in the grammar are processed multiple times; it is not immediately
clear how and to what degree this may affect performance. Other options include
embedding this information in the Earley Tree itself, resulting in an intermediate
data structure many times larger than the desired result.

XSLT Earley: First Steps to a Declarative Parser Generator

244

3.3. Extensible Parsing
The use of the state sequence means that it ought to be possible to write parser
extentions that change the input string as it is parsed, allowing for entity and
macro expanding parsers.

3.4. No Need for Parser Generators
Since the grammar is passed in as an argument to the parsing function, and used
as an input to an xslt transformation mode, there is no inherent dependency on,
nor a need to generate a particular parser for any given grammar. Instead we
have a general purpose transformation library that can parse using any grammar
supplied as Invisible XML.

4. Future Work

4.1. Full Invisible XML Implementation
The first and most obvious opporunity for future work is to complete the imple-
mentation of Invisible XML. This should not be an onerous task, as the list of
remaining features to implement is small and consists mainly of serialisation
options.

4.2. Parsing other Grammar Languages
Once Invisible XML as XML is fully implemented using the non-xml form
becomes trivial: simply parse the grammar using the XML grammar definition.

This ability of the grammar to produce one representation of itself from
another is also a great test of a complete implementation.

It is equally trivial to produce an Invisible XML grammar from any other
grammar language: all that is required is an Invisible XML grammar representa-
tion of the other grammar language (not the grammar itself). In this way it should
be possible to extend the parser to support parsing with EBNF and BNF gram-
mars, such as those found in W3C specifications, without writing any new code.

4.3. Quality and Performance Improvements
Automated testing can be implemented in a straightforward way using a testing
framework like [8].

Viability for scaled applications, and confirmation of performance scaling will
require some performance testing with a range of input strings and grammars.
Performance testing should also show whether performance scales proportion-
ately to equivalent Earley parsers for the same grammar types.

XSLT Earley: First Steps to a Declarative Parser Generator

245

4.4. Ambiguous Parses
Currently the pruning operation on the Earley Tree returns the first valid parse; it
should be possible to optionally return multiple parses for ambiguous grammars.

It might also be possible to extend the parser to try multiple grammars for
ambiguous strings, allowing for general strings to be parsed according to the first
preferred grammar in a list.

Bibliography
[1] Earley, Jay (1970), An efficient context-free parsing algorithm, Communications of

the ACM 13 (2): 94-102, DOI: 10.1145/362007.362035
[2] Pemberton, Steven (2013), Invisible XML, Presented at Balisage: The Markup

Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of
Balisage: The Markup Conference 2013. Balisage Series on Markup Technologies,
vol. 10 (2013). DOI: 10.4242/BalisageVol10.Pemberton01 .

[3] Pemberton, Steven (2016), Parse Earley, Parse Often. In Proc. XML London 2016,
University College London, June 4-5, pp.120-126. DOI: 10.14337/
XMLLondon16.Pemberton01

[4] Kosek, Jirka (2017) Improving validation of structured text. In Proc. XML London
2017, University College London, June 11–12, pp.56–67. DOI: 10.14337/
XMLLondon17.Kosek01 .

[5] Sperberg-McQueen, C. M (2017). Translating imperative algorithms into
declarative, functional terms: towards Earley parsing in XSLT and XQuery.
Presented at Balisage: The Markup Conference 2017, Washington, DC, August
1 - 4, 2017. In Proceedings of Balisage: The Markup Conference 2017. Balisage
Series on Markup Technologies, vol. 19. DOI: 10.4242/BalisageVol19.Sperberg-
McQueen01.

[6] Pemberton, Steven (2019) Invisible XML Specification (Draft), retrieved from the
web on 2019-12-10 https://homepages.cwi.nl/~steven/ixml/ixml-
specification.html

[7] Gunther Rademacher (2019) REx Parser Generator, retrieved from the web on
2019-12-10 https://www.bottlecaps.de/rex/

[8] XSpec, retrieved from the web on 2020-02-10 https://github.com/xspec/xspec

A. Code Listings

Example A.1. Invisible XML Grammar
program: block.
block: "{", S, statement*(";", S), "}", S.

XSLT Earley: First Steps to a Declarative Parser Generator

246

https://homepages.cwi.nl/~steven/ixml/ixml-specification.html
https://homepages.cwi.nl/~steven/ixml/ixml-specification.html
https://www.bottlecaps.de/rex/
https://github.com/xspec/xspec

statement: if-statement; while-statement; assignment; call; block; .
if-statement: "if", S, condition, "then", S, statement, else-part?.
else-part: "else", S, statement.
while-statement: "while", S, condition, "do", S, statement.
assignment: variable, "=", S, expression.
variable: identifier.
call: identifier, "(", S, parameter*(",", S), ")", S.
parameter: -expression.
identifier: letter+, S.
expression: identifier; number.
number: digit+, S.
-letter: ["a"-"z"]; ["A"-"Z"].
-digit: ["0"-"9"].
condition: identifier.
-S: " "*.

Example A.2. Grammar (iXML as XML format)

The grammar is available in XML format at https:// github.com/ eXpertML/
XMLPrague2020/blob/master/Parser/Program.ixml

Table A.1. Earley Items for {a=0}
Symbol Rule Start

State
Notes

S(0) - ∧{a=0}
1 program → ◆ block 0 Because the rule specifies a nonterminal, we have to

predict the next rule, #2, for block
2 block → ◆ "{" statements "}" 0 Now that the next symbol is the terminal symbol { we

can scan to see if the input's next symbol matches. On a
match, we create a modified Earley item #3 in the next
state set, S(1)

S(1) - {∧a=0}
3 block → "{" ◆ statements "}" 0 NB the starting point is unchanged. Now we can con-

tinue to predict and scan items #4 and #5 from the non-
terminal statements.

4 state-
ments

→ ◆ empty 1 The start state for predictions is set to the current state
number. This predicts #6

5 state-
ments

→ ◆ statement statements 1 Because there are many choices for statement, an item
is predicted for each of those choices #7-11

6 empty → ◆ 1 This is our first completion (the ◆ marker is at the end
of the rule).

The start state is 1, so we look in S(1) for the rule
that predicts 'empty' - i.e. item #4. We can then restate
#4 as #12, moving the nonterminal to the left-hand
side.

7 statement → ◆ if_statement 1 predicts if_statement
9 statement → ◆ assignment 1 predicts assignment
10 statement → ◆ call 1 predicts call

XSLT Earley: First Steps to a Declarative Parser Generator

247

https://github.com/eXpertML/XMLPrague2020/blob/master/Parser/Program.ixml
https://github.com/eXpertML/XMLPrague2020/blob/master/Parser/Program.ixml

Symbol Rule Start
State

Notes

12 state-
ments

→ empty ◆ 1 a completion of #4 resulting in #13

13 block → "{" statements ◆ "}" 0 a scan of the next character, 'a' will fail to match '{', so
no further items are created from this parse branch

14 if_state-
ment

→ ◆ "if" condition "then" state-
ment else-option

1 a scan of the next token fails; no further actions

16 assign-
ment

→ ◆ variable "=" expression 1 predicts variable

17 call → ◆ identifier "(" parameters ")" 1 predicts identifier
19 variable → ◆ identifier 1 predicts identifier - note that this is the same prediction

that results from #17, so we don't need to run this
twice...

20 identifier → ◆ [abxy] 1 A scan of the next character ('a') succeeds - we can pro-
ceed to the first item of state S(2)

S(2) - {a∧=0}
21 identifier → [abxy] ◆ 1 A completion of #20 resulting in #22 and #23
22 variable → identifier ◆ 1 A completion of #19 resulting in #24
23 call → identifier ◆ "(" parameters ")" 1 a scan of the next token fails; no further actions
24 assign-

ment
→ variable ◆ "=" expression 1 a scan of the next token matches, so we can create a

new item and increment the start state
S(3) - {a=∧0}
25 assign-

ment
→ variable "=" ◆ expression 1 predicts expression

26 expres-
sion

→ ◆ number 3 (other potential nonterminal matches for expression
are skipped here for brevity)

27 number → ◆ [0-9] 3 An example of how to cope with '+' - it's equivalent to
a choice between a single instance...

28 number → ◆ [0-9] number 3 ... or a single instance followed by the same nontermi-
nal.

S(4) - {a=0∧}
29 number → [0-9] ◆ 3 A completion of #27 resulting in 31
30 number → [0-9] ◆ number 3 predicts number (#32 and #33)
31 expres-

sion
→ number ◆ 3 A completion of #26 resulting in 34

32 number → ◆ [0-9] 4 a scan of the next token fails; no further actions
33 number → ◆ [0-9] number 4 a scan of the next token fails; no further actions
34 assign-

ment
→ variable "=" expression ◆ 1 A completion of #25 resulting in #35

35 statement → assignment ◆ 1 A completion of #9 resulting in #36
36 state-

ments
→ statement ◆ statements 1 A completion of #5 resulting in #37 and #38 being a pre-

diction for statements
37 state-

ments
→ ◆ empty 4 predicts empty #39

38 state-
ments

→ ◆ statement statements 4 We're going to skip the list of nonterminals here for
brevity; it is left as an exercise for the reader to show
that none of them will complete satisfactorily!

39 empty → ◆ 4 completes itself

XSLT Earley: First Steps to a Declarative Parser Generator

248

Symbol Rule Start
State

Notes

40 state-
ments

→ empty ◆ 4 completes #37

41 state-
ments

→ statement statements ◆ 1 completes #36 giving #42

42 block → "{" statements ◆ "}" 0
S(5) - {a=0}∧
43 block → "{" statements "}" ◆ 0 Now we have a completion of the entire string, ending

at the final state S(5) and beginning with the initial
state S(0) - but we aren't quite finished because it
doesn't match the start symbol...

44 program → block ◆ 0 Parse Success!

XSLT Earley: First Steps to a Declarative Parser Generator

249

250

Jiří Kosek (ed.)

XML Prague 2020
Conference Proceedings

Published by
Ing. Jiří Kosek

Filipka 326
463 23 Oldřichov v Hájích

Czech Republic

PDF was produced from DocBook XML sources
using XSL-FO and AH Formatter.

1st edition

Prague 2020

ISBN 978-80-906259-8-3 (pdf)
ISBN 978-80-906259-9-0 (ePub)

	XML Prague 2020
	Table of Contents
	General Information
	Sponsors
	Preface
	A note on Editor performance
	1. Introduction
	1.1. How does Fonto work?
	1.2. What is performance?

	2. Accessing schema experience configuration
	2.1. Orthogonal configuration
	2.2. Selector buckets
	2.3. Selector priority / optimal order of execution
	2.3.1. Conceptual Approach
	2.3.2. Optimization
	2.3.3. Performance impact
	2.3.3.1. Measurement
	2.3.3.2. Comparison to another approach

	2.4. Deduplication of duplicate property values
	2.5. Related work

	3. Processing XML at interactive speeds
	3.1. General XPath performance
	3.1.1. Outermost

	3.2. Schema validity
	3.3. Indices
	3.3.1. Indexing arbitrary computations
	3.3.2. Indexing and overlays
	3.3.3. Fonto versus XML databases

	4. Conclusions
	5. Future work
	Bibliography

	XSLWeb: XSLT- and XQuery-only pipelines for the web
	1. Introduction
	2. Why XSLWeb?
	3. XSLWeb in a nutshell
	3.1. The Request XML and the Response XML
	3.2. The Request dispatcher XSLT stylesheet
	3.2.1. Example pipelines

	3.3. Pipelines
	3.3.1. Goodies

	3.4. Web applications
	3.4.1. The file webapp.xml

	3.5. Running XSLWeb
	3.6. Performance and data model

	4. XSLWeb in the real world
	A. References

	Things We Lost in the Fire
	1. We Call Ourselves Grumpy Old Men
	2. The Things That Lit the Matches
	2.1. Programming Languages as Religion
	2.2. The Strict DTD
	2.3. Page by Page
	2.4. We've Always Done This
	2.5. We've Always Done This, Part 2
	2.6. 90-minute Standups
	2.7. The Build Is Green
	2.8. Make It Better
	2.9. An XSD for Appearances
	2.10. 'oy' DaSIQjaj
	2.11. Open Source as Policy
	2.12. Old Software
	2.13. Subscription Services
	2.14. You Can Choose Any Software You Want
	2.15. Not Hawt Enough
	2.16. Those Were the Days
	2.17. Latin 1 and Entitites

	3. Opposing Views
	3.1. Sometimes SGML Is What You Want
	3.2. Sometimes Word Is What You Want

	4. Things We Found among the Ashes

	Sequence alignment in XSLT 3.0
	1. Introduction
	1.1. Why sequence aligment matters
	1.2. Biological and textual alignment
	1.3. Global pairwise alignment
	1.4. Overview of this report

	2. About sequence alignment
	2.1. Alignment and scoring
	2.2. Sequence alignment algorithms

	3. Dynamic programming and the Needleman Wunsch algorithm
	3.1. Dynamic programming
	3.2. The Needleman Wunsch algorithm

	4. The challenges of dynamic programming and XSLT
	4.1. Why recursion breaks
	4.2. Iteration to the rescue
	4.3. Processing the anti-diagonal
	4.4. Save yourself a trip … and some space
	4.5. Performance

	5. Conclusions
	Works cited

	Powerful patterns with XSLT 3.0 hidden improvements
	1. Resources
	2. A quick tour on patterns
	2.1. New invocation methods since XSLT 3.0
	2.2. The role of patterns in an XSLT stylesheet
	2.3. Priority of templates
	2.3.1. Default priority
	2.3.2. Priorities as inheritance
	2.3.3. Mode declarations
	2.3.4. The six build-in templates

	3. What's new in XSLT 3.0 patterns
	3.1. Main new features
	3.2. Other related new features

	4. Position and size in XSLT 3.0 patterns
	5. Reading a pattern
	5.1. Reading from the left and a note on performance

	6. Writing patterns
	6.1. Matching every node
	6.2. Matching the new axes
	6.3. Matching nodes with or without a parent
	6.4. Matching complex patterns through variables
	6.5. The use-case for root()
	6.6. Patterns with doc()
	6.7. Patterns with except and intersect
	6.8. Root level parenthesized patterns
	6.9. Parenthesized steps in patterns
	6.10. Disjunctive patterns with parenthesized rooted steps

	7. Surprising patterns
	7.1. Single step axes, subtle differences
	7.2. Potentially erroneous patterns
	7.3. Descendant axis variants as middle step
	7.4. Predicate patterns and other suprising patterns

	8. Conclusion
	Bibliography

	A Proposal for XSLT 4.0
	1. Introduction
	2. Types
	2.1. Tuple types
	2.2. Union Types
	2.3. Node types
	2.4. Default namespace for types
	2.5. Named item types
	2.6. Type testing in patterns
	2.7. Function Conversion Rules
	2.8. Static type-checking rules

	3. Functions
	3.1. Dot Functions
	3.2. Underscore Functions
	3.3. Default Arguments

	4. Conditionals
	4.1. The otherwise operator
	4.2. Adding @select to <xsl:when> and <xsl:otherwise>
	4.3. Adding @then and @else attributes to <xsl:if>
	4.4. xsl:message/@test attribute
	4.5. Equality Operators

	5. Template Rules and Modes
	5.1. Enclosed Modes
	5.2. Typed modes
	5.3. Default Namespace for Elements

	6. Processing Maps and Arrays
	6.1. Array construction
	6.2. Map construction
	6.3. The Lookup Operator ("?")
	6.4. Iterating over array members
	6.5. Rule-based recursive descent with maps and arrays
	6.5.1. Type-based pattern matching
	6.5.2. Decomposing Maps

	7. New Functions
	7.1. fn:item-at
	7.2. fn:stack-trace
	7.3. fn:deep-equal with options
	7.4. fn:differences()
	7.5. fn:index-where($input, $predicate)
	7.6. fn:items-before(), fn:items-until(), fn:items-from(), fn:items-after()
	7.7. map:index($input, $key)
	7.8. map:replace($map, $key, $action)
	7.9. fn:highest() and fn:lowest()
	7.10. fn:replace-with()
	7.11. fn:characters()
	7.12. fn:is-NaN()
	7.13. Node construction functions

	References

	(Re)presentation in XForms
	1. XForms
	2. Principles
	3. The effect of data properties on presentation of controls
	4. Implementation approaches
	5. Integration in HTML+CSS
	6. Improvements
	7. Skinning
	8. Future Transformation
	9. Conclusion
	10. References
	Bibliography

	Greenfox – a schema language for validating file systems
	1. Introduction
	2. Getting started with greenfox
	2.1. The system – system S
	2.2. Building a greenfox schema "system S"

	3. Basic principles
	4. Information model
	4.1. Part 1: resource model
	4.1.1. Folder resources
	4.1.2. File resources

	4.2. Part 2: schema model
	4.3. Part 3: validation model

	5. Schema building blocks
	6. Schema language extension
	7. Validation results
	7.1. Validation reports and representations
	7.2. Validation result

	8. Implementation
	9. Discussion
	A. Greenfox schema "system S"
	B. Alignment of key concepts between greenfox and SHACL
	C. Validation result model
	D. Note on the generation of resource values by expression chains
	Bibliography

	Use cases and examination of XML technologies to process MS Word documents in a corporate environment
	1. The problem with styles and Word
	2. Non-XML solutions
	3. A standards-based solution
	4. Providing fixes using a “QuickFix” like approach
	5. Technical challenges and solutions
	5.1. XProc
	5.2. XSLT
	5.3. Dynamic calls to functions
	5.4. OOXML

	6. Conclusion
	Bibliography

	XML-MutaTe
	1. Introduction
	2. Integrated Test Approach
	2.1. Test Generation by Mutation
	2.2. Validation with Expectations
	2.3. Declarative Annotation

	3. Simple Mutation and Testing Language
	3.1. xmute Processing Instructions
	3.2. Mutations
	3.3. Test Expectations
	3.3.1. Expectations on XML Schema
	3.3.2. Expectations on Schematron Rules

	3.4. Test Metadata

	4. XML-MutaTe Prototype
	5. Use Case: XRechnung Standard
	6. Discussion and Conclusion
	7. Outlook
	Bibliography

	Analytical XSLT
	1. Abstract
	2. Introduction
	3. Existing Tools For Comparing DTDs
	3.1. DTD Diff
	3.2. DTD Comparator and DtdAnalyzer
	3.3. Style Studio

	4. Eddie 2
	4.1. Eddie 2 Overview
	4.1.1. The Generated XSLT Stylesheet
	4.1.2. The Generated Report

	4.2. Eddie 2 Plugins
	4.3. Eddie 2 in Use

	5. Discussion
	6. Where Eddie 2 Does Not Help, and Future Work
	7. Conclusions

	XSLT Earley: First Steps to a Declarative Parser Generator
	1. Introduction
	1.1. Invisible XML
	1.2. Why Use XSLT based Parsers?
	1.3. Why not LL1 Parsers
	1.4. Writing Extensible Parsers
	1.5. The Earley Parser (very) briefly explained
	1.6. Macro Substitution

	2. Methodology
	2.1. Choosing a Grammar Language
	2.2. Determining the Earley Objects
	2.3. The Earley Tree
	2.4. State References
	2.5. Tracking Visited Nonterminals
	2.6. Controlling the Process Order
	2.7. Dealing with Repetition: repeat0
	2.8. Dealing with Repetition: repeat1
	2.9. Pruning the Earley Tree
	2.10. Results

	3. Conclusions
	3.1. Proof of Concept
	3.2. Earley enough?
	3.3. Extensible Parsing
	3.4. No Need for Parser Generators

	4. Future Work
	4.1. Full Invisible XML Implementation
	4.2. Parsing other Grammar Languages
	4.3. Quality and Performance Improvements
	4.4. Ambiguous Parses

	Bibliography
	A. Code Listings

